SHIP: A Shapelet-based Approach for Interpretable Patient-Ventilator Asynchrony Detection
- URL: http://arxiv.org/abs/2503.06571v2
- Date: Thu, 13 Mar 2025 02:01:30 GMT
- Title: SHIP: A Shapelet-based Approach for Interpretable Patient-Ventilator Asynchrony Detection
- Authors: Xuan-May Le, Ling Luo, Uwe Aickelin, Minh-Tuan Tran, David Berlowitz, Mark Howard,
- Abstract summary: Patient-ventilator asynchrony (PVA) is a common and critical issue during mechanical ventilation, affecting up to 85% of patients.<n>We propose a shapelet-based approach SHIP for PVA detection, utilizing shapelets - discriminative subsequences in time-series data.<n>Our method addresses dataset imbalances through shapelet-based data augmentation and constructs a shapelet pool to transform the dataset for more effective classification.
- Score: 3.580340090571342
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Patient-ventilator asynchrony (PVA) is a common and critical issue during mechanical ventilation, affecting up to 85% of patients. PVA can result in clinical complications such as discomfort, sleep disruption, and potentially more severe conditions like ventilator-induced lung injury and diaphragm dysfunction. Traditional PVA management, which relies on manual adjustments by healthcare providers, is often inadequate due to delays and errors. While various computational methods, including rule-based, statistical, and deep learning approaches, have been developed to detect PVA events, they face challenges related to dataset imbalances and lack of interpretability. In this work, we propose a shapelet-based approach SHIP for PVA detection, utilizing shapelets - discriminative subsequences in time-series data - to enhance detection accuracy and interpretability. Our method addresses dataset imbalances through shapelet-based data augmentation and constructs a shapelet pool to transform the dataset for more effective classification. The combined shapelet and statistical features are then used in a classifier to identify PVA events. Experimental results on medical datasets show that SHIP significantly improves PVA detection while providing interpretable insights into model decisions.
Related papers
- Leveraging Cardiovascular Simulations for In-Vivo Prediction of Cardiac Biomarkers [43.17768785084301]
We train an amortized neural posterior estimator on a newly built large dataset of cardiac simulations.<n>We incorporate elements modeling effects to better align simulated data with real-world measurements.<n>The proposed framework can further integrate in-vivo data sources to refine its predictive capabilities on real-world data.
arXiv Detail & Related papers (2024-12-23T13:05:17Z) - Towards Clinician-Preferred Segmentation: Leveraging Human-in-the-Loop for Test Time Adaptation in Medical Image Segmentation [10.65123164779962]
Deep learning-based medical image segmentation models often face performance degradation when deployed across various medical centers.
We propose a novel Human-in-the-loop TTA framework that capitalizes on the largely overlooked potential of clinician-corrected predictions.
Our framework conceives a divergence loss, designed specifically to diminish the prediction divergence instigated by domain disparities.
arXiv Detail & Related papers (2024-05-14T02:02:15Z) - Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs [35.46541584018842]
Unsupervised Anomaly Detection (UAD) aims to identify any anomaly as an outlier from a healthy training distribution.<n>generative models are used to learn the reconstruction of healthy brain anatomy for a given input image.<n>We propose conditioning the denoising process of diffusion models with additional information derived from a latent representation of the input image.
arXiv Detail & Related papers (2023-12-07T11:03:42Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Flexible Amortized Variational Inference in qBOLD MRI [56.4324135502282]
Oxygen extraction fraction (OEF) and deoxygenated blood volume (DBV) are more ambiguously determined from the data.
Existing inference methods tend to yield very noisy and underestimated OEF maps, while overestimating DBV.
This work describes a novel probabilistic machine learning approach that can infer plausible distributions of OEF and DBV.
arXiv Detail & Related papers (2022-03-11T10:47:16Z) - Causal Effect Variational Autoencoder with Uniform Treatment [50.895390968371665]
Causal effect variational autoencoder (CEVAE) are trained to predict the outcome given observational treatment data.
Uniform treatment variational autoencoders (UTVAE) are trained with uniform treatment distribution using importance sampling.
arXiv Detail & Related papers (2021-11-16T17:40:57Z) - A Model-Based Approach to Synthetic Data Set Generation for
Patient-Ventilator Waveforms for Machine Learning and Educational Use [0.0]
We propose a model-based approach to generate a synthetic data set for machine learning and educational use.
We generated a synthetic data set using 9 different patient archetypes, which are derived from measurements in the literature.
arXiv Detail & Related papers (2021-03-29T15:10:17Z) - Medical data wrangling with sequential variational autoencoders [5.9207487081080705]
This paper proposes to model medical data records with heterogeneous data types and bursty missing data using sequential variational autoencoders (VAEs)
We show that Shi-VAE achieves the best performance in terms of using both metrics, with lower computational complexity than the GP-VAE model.
arXiv Detail & Related papers (2021-03-12T10:59:26Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data [68.29870617697532]
We propose Deep Recurrent Inverse TreatmEnt weighting (DeepRite) for time-varying confounding in longitudinal data.
DeepRite is shown to recover the ground truth from synthetic data, and estimate unbiased treatment effects from real data.
arXiv Detail & Related papers (2020-10-28T15:05:08Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.