論文の概要: Towards proactive self-adaptive AI for non-stationary environments with dataset shifts
- arxiv url: http://arxiv.org/abs/2504.21565v1
- Date: Wed, 30 Apr 2025 12:09:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 18:59:31.235893
- Title: Towards proactive self-adaptive AI for non-stationary environments with dataset shifts
- Title(参考訳): データセットシフトを伴う非定常環境のための能動的自己適応型AIの実現に向けて
- Authors: David Fernández Narro, Pablo Ferri, Juan M. García-Gómez, Carlos Sáez,
- Abstract要約: 本稿では,AIパラメータの時間的・軌跡をモデル化する,プロアクティブな自己適応型AIアプローチを提案する。
この研究は、動的で非定常な環境に対する適応型AI研究の基礎を築いた。
- 参考スコア(独自算出の注目度): 1.1045045527359925
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial Intelligence (AI) models deployed in production frequently face challenges in maintaining their performance in non-stationary environments. This issue is particularly noticeable in medical settings, where temporal dataset shifts often occur. These shifts arise when the distributions of training data differ from those of the data encountered during deployment over time. Further, new labeled data to continuously retrain AI is not typically available in a timely manner due to data access limitations. To address these challenges, we propose a proactive self-adaptive AI approach, or pro-adaptive, where we model the temporal trajectory of AI parameters, allowing us to short-term forecast parameter values. To this end, we use polynomial spline bases, within an extensible Functional Data Analysis framework. We validate our methodology with a logistic regression model addressing prior probability shift, covariate shift, and concept shift. This validation is conducted on both a controlled simulated dataset and a publicly available real-world COVID-19 dataset from Mexico, with various shifts occurring between 2020 and 2024. Our results indicate that this approach enhances the performance of AI against shifts compared to baseline stable models trained at different time distances from the present, without requiring updated training data. This work lays the foundation for pro-adaptive AI research against dynamic, non-stationary environments, being compatible with data protection, in resilient AI production environments for health.
- Abstract(参考訳): 実運用環境にデプロイされる人工知能(AI)モデルは、非定常環境でのパフォーマンスを維持する上で、しばしば課題に直面します。
この問題は、時間的データセットシフトが頻繁に発生する医療環境において特に顕著である。
これらのシフトは、トレーニングデータの分布が、時間をかけてデプロイ中に遭遇するデータと異なるときに発生する。
さらに、AIを継続的に再トレーニングする新しいラベル付きデータは、データアクセス制限のため、通常はタイムリーに利用できない。
これらの課題に対処するために、我々は、AIパラメータの時間軌道をモデル化し、短期的な予測パラメータ値を可能にする、プロアクティブな自己適応型AIアプローチ(proactive self-adaptive AI approach, pro-adaptive)を提案する。
この目的のために、拡張可能な関数データ分析フレームワーク内で多項式スプラインベースを使用します。
我々は,事前確率シフト,共変量シフト,概念シフトに対処するロジスティック回帰モデルを用いて方法論を検証する。
この検証は、制御されたシミュレートされたデータセットと、メキシコから公開されている現実世界のCOVID-19データセットの両方で実施される。
提案手法は,現在から異なる時間間隔でトレーニングされたベースライン安定モデルと比較して,最新のトレーニングデータを必要とせずに,AIのシフトに対する性能を向上させることを示唆している。
この研究は、健康のためのレジリエントなAI生産環境において、データ保護と互換性のある、動的で静止しない環境に対する、適応型AI研究の基盤となる。
関連論文リスト
- Inverse Reinforcement Learning for Minimum-Exposure Paths in Spatiotemporally Varying Scalar Fields [49.1574468325115]
このようなパスのトレーニングデータセットに類似した最小露出パスのデータセットを合成する問題を考える。
本論文の主な貢献は、この問題を解決するための逆強化学習(IRL)モデルである。
提案したIRLモデルは,トレーニングデータセットにない初期条件から経路を合成する際の優れた性能を提供する。
論文 参考訳(メタデータ) (2025-03-09T13:30:11Z) - CAAT-EHR: Cross-Attentional Autoregressive Transformer for Multimodal Electronic Health Record Embeddings [0.0]
本稿では,タスク非依存の縦埋め込みを生のEHRデータから生成する新しいアーキテクチャであるCAAT-EHRを紹介する。
自己回帰デコーダは、事前訓練中に将来の時刻データを予測してエンコーダを補完し、その結果の埋め込みが時間的整合性と整合性を維持する。
論文 参考訳(メタデータ) (2025-01-31T05:00:02Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Stochastic Gradient Descent with Adaptive Data [4.119418481809095]
勾配降下(SGD)は、オンライン学習シナリオにおいて特に有用である強力な最適化手法である。
オペレーションリサーチにおけるポリシー最適化問題へのSGDの適用には、環境を変えてポリシー更新に使用するデータに影響を与えるという、明確な課題が伴う。
過去の決定が生成したデータに与える影響は、勾配推定におけるバイアスを導入し、iidケースに存在しないオンライン学習の不安定性の潜在的な原因を示す。
適応データによるSGDの収束速度は, 政策誘起力学の混合時間に係わる限り, 古典的イド設定とほとんど同様であることを示す。
論文 参考訳(メタデータ) (2024-10-02T02:58:32Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Online Performance Estimation with Unlabeled Data: A Bayesian Application of the Hui-Walter Paradigm [0.0]
我々は、伝統的に疫学や医学に応用されたHui-Walterパラダイムを機械学習の分野に適用する。
根拠のないシナリオでは、偽陽性率、偽陰性率、先行といった重要なパフォーマンス指標を推定する。
オンラインデータを扱うためのこのパラダイムを拡張し、動的データ環境の新しい可能性を広げます。
論文 参考訳(メタデータ) (2024-01-17T17:46:10Z) - A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams [0.0]
本稿では,制限付きラベル付きデータを用いたストリーミング環境の最適戦略を提案し,教師なし回帰のための適応手法を提案する。
提案手法は,初期ラベルのスパースセットを活用し,革新的なドリフト検出機構を導入する。
適応性を高めるために,Adaptive WINdowingアルゴリズムとRoot Mean Square Error (RMSE)に基づく誤り一般化アルゴリズムを統合する。
論文 参考訳(メタデータ) (2023-12-12T19:23:54Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
モデルの新しい設計に基づく新しい生成フレームワークであるKoopman VAEを紹介する。
クープマン理論に触発され、線形写像を用いて潜在条件事前力学を表現する。
KoVAEは、いくつかの挑戦的な合成および実世界の時系列生成ベンチマークにおいて、最先端のGANおよびVAEメソッドより優れている。
論文 参考訳(メタデータ) (2023-10-04T07:14:43Z) - Fully Embedded Time-Series Generative Adversarial Networks [0.0]
GAN(Generative Adversarial Networks)は、モデル化されているデータの基盤となる分布に適合する合成データを生成する。
実値の時系列データの場合、これはデータの静的な分布を同時にキャプチャする必要があるだけでなく、潜在的な時間的地平線に対するデータの完全な時間的分布も同時に取得する必要があることを意味する。
FETSGANでは、全シーケンスはSeq2seqスタイルの逆自動エンコーダ(AAE)を使用して、ジェネレータのサンプリング空間に直接変換される。
論文 参考訳(メタデータ) (2023-08-30T03:14:02Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。