Probing the Design Space of InSb Topological Superconductor Nanowires for the Realization of Majorana Zero Modes
- URL: http://arxiv.org/abs/2503.06735v2
- Date: Mon, 28 Apr 2025 12:20:16 GMT
- Title: Probing the Design Space of InSb Topological Superconductor Nanowires for the Realization of Majorana Zero Modes
- Authors: Mirko Poljak,
- Abstract summary: InSb topological superconductor nanowires (TSNW) are investigated theoretically and numerically to evaluate their suitability to host Majorana zero modes (MZMs)<n>For 1.6 mum- and 2.2 mum-long InSb TSNWs we demonstrate the existence of the optimum design space defined by the applied magnetic field and electrochemical potential.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Non-Abelian anyons such as Majorana zero modes (MZMs) have the potential to enable fault-tolerant quantum computing through topological protection. Experimentally reported InSb topological superconductor nanowires (TSNW) are investigated theoretically and numerically to evaluate their suitability to host MZMs. We employ eigenspectra analysis and quantum transport based on the non-equilibrium Green's function (NEGF) formalism to investigate the eigenenergies, Majorana wave functions via local density of states, transmission spectra for Andreev processes, and zero-bias conductance peaks (ZBCPs) in InSb TSNWs. For 1.6 {\mu}m- and 2.2 {\mu}m-long InSb TSNWs we demonstrate the existence of the optimum design space defined by the applied magnetic field and electrochemical potential, which leads to clear ZBCP signatures with a Majorana localization length down to ~340 nm.
Related papers
- Controllable and Continuous Quantum Phase Transitions in Intrinsic Magnetic Topological Insulator [50.54133633499971]
We study the intrinsic magnetic topological material MnBi2Te4 in which the heavy n-type doping features are strongly suppressed.
Based on angle-resolved photoemission spectroscopy, transport measurements, and first-principles calculations, we reveal two magnetism-induced TPTs.
Our work paves the way for the realization of intrinsic magnetic topological states in MnBi2Te4 family and provides an ideal platform for achieving controllable and continuous TPTs.
arXiv Detail & Related papers (2025-03-08T03:46:54Z) - Transport properties and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures [44.99833362998488]
We propose a one-dimensional electronic nanodevice inspired in recently fabricated semiconductor-superconductor-ferromagnetic insulator hybrids.
We show that the device can be tuned across spin- and fermion parity-changing QPTs by adjusting the FMI layer length orange and/or by applying a global backgate voltage.
Our findings suggest that these effects are experimentally accessible and offer a robust platform for studying quantum phase transitions in hybrid nanowires.
arXiv Detail & Related papers (2024-10-18T22:25:50Z) - Cavity Control of Topological Qubits: Fusion Rule, Anyon Braiding and Majorana-Schrödinger Cat States [39.58317527488534]
We investigate the impact of introducing a local cavity within the center of a topological chain.
This cavity induces a scissor-like effect that bisects the chain, liberating Majorana zero modes (MZMs) within the bulk.
By leveraging the symmetry properties of fermion modes within a two-site cavity, we propose a novel method for generating MZM-polariton Schr"odinger cat states.
arXiv Detail & Related papers (2024-09-06T18:00:00Z) - Stability of Majorana zero modes with quantum optical lattices [0.0]
I analyze the emergence of Majorana zero modes (MZM) in a one dimensional ultracold fermionic system confined by an optical lattice inside a high-Q cavity.
MZM have potential applications for quantum information as they are topologically protected analogous to the behaviour of the Kitaev chain.
arXiv Detail & Related papers (2024-08-16T06:44:20Z) - Fragmented superconductivity in the Hubbard model as solitons in Ginzburg-Landau theory [39.58317527488534]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - On the conclusive detection of Majorana zero modes: conductance
spectroscopy, disconnected entanglement entropy and the fermion parity noise [1.6114012813668934]
nanowires with strong Rashba spin-orbit coupling in the proximity with a superconductor and under a strong Zeeman field can potentially manifest Majorana zero modes at their edges.
We detail mathematical ideas related to the entanglement entropy and the fermion parity fluctuations to faithfully distinguish between true Majorana zero modes and trivial quasi-Majorana zero modes.
arXiv Detail & Related papers (2023-03-07T12:05:29Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Majorana-like oscillation for edge states in one-dimensional topological
chain with dissipative couplings [6.672381426817075]
Majorana modes with near zero energy play an important role for ascertaining Majorana fermions.
We show that common environments shared by each pair of the nearest neighbour sites in the Su-Schrieffer-Heeger chain can result in dissipative couplings.
The controllable topology parameter of the SSHc plays the role of the magnetic field in the nanowire for controlling Majorana oscillation.
arXiv Detail & Related papers (2021-09-10T06:46:05Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Detecting and Distinguishing Majorana Zero Modes with the Scanning
Tunneling Microscope [0.0]
Majorana zero modes (MZM) are predicted to emerge as localized zero energy states at the ends of one-dimensional topological superconductors.
The scanning tunneling microscope (STM) has played a key role in the search for experimental signatures of these novel quasi-particles.
The power of high-resolution STM techniques is perhaps best illustrated by their application in identifying MZM in one-dimensional chains of magnetic atoms on the surface of a superconductor.
arXiv Detail & Related papers (2021-03-24T14:13:39Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.