論文の概要: Safety Aware Task Planning via Large Language Models in Robotics
- arxiv url: http://arxiv.org/abs/2503.15707v1
- Date: Wed, 19 Mar 2025 21:41:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:33:38.344290
- Title: Safety Aware Task Planning via Large Language Models in Robotics
- Title(参考訳): ロボットにおける大規模言語モデルによるタスクプランニングの安全性
- Authors: Azal Ahmad Khan, Michael Andrev, Muhammad Ali Murtaza, Sergio Aguilera, Rui Zhang, Jie Ding, Seth Hutchinson, Ali Anwar,
- Abstract要約: 本稿では,ロボット作業計画に安全意識を組み込むためのマルチLLMフレームワークであるSAFER(Safety-Aware Framework for Execution in Robotics)を紹介する。
本フレームワークは, 複数段階の安全フィードバックを統合し, リアルタイムリスク評価, プロアクティブエラー訂正, 透過的安全性評価を実現している。
- 参考スコア(独自算出の注目度): 22.72668275829238
- License:
- Abstract: The integration of large language models (LLMs) into robotic task planning has unlocked better reasoning capabilities for complex, long-horizon workflows. However, ensuring safety in LLM-driven plans remains a critical challenge, as these models often prioritize task completion over risk mitigation. This paper introduces SAFER (Safety-Aware Framework for Execution in Robotics), a multi-LLM framework designed to embed safety awareness into robotic task planning. SAFER employs a Safety Agent that operates alongside the primary task planner, providing safety feedback. Additionally, we introduce LLM-as-a-Judge, a novel metric leveraging LLMs as evaluators to quantify safety violations within generated task plans. Our framework integrates safety feedback at multiple stages of execution, enabling real-time risk assessment, proactive error correction, and transparent safety evaluation. We also integrate a control framework using Control Barrier Functions (CBFs) to ensure safety guarantees within SAFER's task planning. We evaluated SAFER against state-of-the-art LLM planners on complex long-horizon tasks involving heterogeneous robotic agents, demonstrating its effectiveness in reducing safety violations while maintaining task efficiency. We also verify the task planner and safety planner through actual hardware experiments involving multiple robots and a human.
- Abstract(参考訳): 大規模言語モデル(LLM)をロボットタスク計画に統合することで、複雑で長期にわたるワークフローの推論能力が向上した。
しかし、これらのモデルではリスク軽減よりもタスク完了が優先されるため、LSM主導の計画の安全性確保は依然として重要な課題である。
本稿では,ロボット作業計画に安全意識を組み込むためのマルチLLMフレームワークであるSAFER(Safety-Aware Framework for Execution in Robotics)を紹介する。
SAFERは、主要なタスクプランナーと共に動作する安全エージェントを採用し、安全フィードバックを提供している。
さらに、LLMを評価指標として活用し、生成されたタスク計画内での安全性違反を定量化する新しい指標であるLLM-as-a-Judgeを紹介する。
本フレームワークは, 複数段階の安全フィードバックを統合し, リアルタイムリスク評価, プロアクティブエラー訂正, 透過的安全性評価を実現している。
また、制御バリア関数(CBF)を用いた制御フレームワークを統合し、SAFERのタスク計画における安全性を保証する。
我々は、異種ロボットエージェントを含む複雑な長期作業において、SAFERを最先端のLSMプランナーに対して評価し、タスク効率を維持しながら安全性違反を減らす効果を実証した。
また、複数のロボットと人間を含む実際のハードウェア実験を通じて、タスクプランナーと安全プランナーの検証を行う。
関連論文リスト
- AGrail: A Lifelong Agent Guardrail with Effective and Adaptive Safety Detection [47.83354878065321]
我々は,エージェントの安全性を高めるため,生涯のガードレールであるAGrailを提案する。
AGrailは適応型安全チェック生成、効果的な安全チェック最適化、ツールの互換性と柔軟性を備えている。
論文 参考訳(メタデータ) (2025-02-17T05:12:33Z) - AgentGuard: Repurposing Agentic Orchestrator for Safety Evaluation of Tool Orchestration [0.3222802562733787]
AgentGuardは、安全でないツールの使用を自律的に発見し、検証するフレームワークである。
エージェントの動作を限定する安全制約を生成し、安全保証の基準を達成する。
フレームワークは、安全でないことを識別し、実際の実行でそれらを検証し、安全性の制約を生成し、制約の有効性を検証する。
論文 参考訳(メタデータ) (2025-02-13T23:00:33Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - Defining and Evaluating Physical Safety for Large Language Models [62.4971588282174]
大型言語モデル (LLM) は、ドローンのようなロボットシステムを制御するためにますます使われている。
現実世界のアプリケーションに物理的な脅威や害をもたらすリスクは、まだ解明されていない。
我々は,ドローンの物理的安全性リスクを,(1)目標脅威,(2)目標脅威,(3)インフラ攻撃,(4)規制違反の4つのカテゴリに分類する。
論文 参考訳(メタデータ) (2024-11-04T17:41:25Z) - Safety Control of Service Robots with LLMs and Embodied Knowledge Graphs [12.787160626087744]
本稿では,大規模言語モデルとERCP(Embodied Robotic Control Prompts)とEKG(Embodied Knowledge Graphs)との新たな統合を提案する。
ERCPは、LLMが安全かつ正確な応答を生成するための事前定義された命令として設計されている。
EKGは、ロボットの動作が安全プロトコルと継続的に一致していることを保証する包括的な知識基盤を提供する。
論文 参考訳(メタデータ) (2024-05-28T05:50:25Z) - On the Vulnerability of LLM/VLM-Controlled Robotics [54.57914943017522]
大規模言語モデル(LLM)と視覚言語モデル(VLM)を統合するロボットシステムの脆弱性を,入力モダリティの感度によって強調する。
LLM/VLM制御型2つのロボットシステムにおいて,単純な入力摂動がタスク実行の成功率を22.2%,14.6%減少させることを示す。
論文 参考訳(メタデータ) (2024-02-15T22:01:45Z) - TrustAgent: Towards Safe and Trustworthy LLM-based Agents [50.33549510615024]
本稿では,エージェント・コンスティチューションをベースとしたエージェント・フレームワークであるTrustAgentについて述べる。
提案枠組みは,計画立案前のモデルに安全知識を注入する事前計画戦略,計画立案時の安全性を高める内計画戦略,計画後検査による安全性を確保する後計画戦略の3つの戦略要素を通じて,エージェント憲法の厳格な遵守を保証する。
論文 参考訳(メタデータ) (2024-02-02T17:26:23Z) - Plug in the Safety Chip: Enforcing Constraints for LLM-driven Robot
Agents [25.62431723307089]
線形時間論理(LTL)に基づく問合せ型安全制約モジュールを提案する。
我々のシステムは、安全上の制約を厳格に遵守し、複雑な安全上の制約とうまく対応し、実用性の可能性を強調します。
論文 参考訳(メタデータ) (2023-09-18T16:33:30Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - SHARP: Shielding-Aware Robust Planning for Safe and Efficient
Human-Robot Interaction [5.804727815849655]
シールド」制御スキームは、安全クリティカルなイベントが差し迫った場合に、ロボットの名目上の計画と安全フォールバック戦略をオーバーライドする。
本研究では,ロボットが将来の遮蔽イベントを明示的に考慮し,効率的に計画できる新しい遮蔽型計画手法を提案する。
論文 参考訳(メタデータ) (2021-10-02T17:01:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。