論文の概要: ResMoE: Space-efficient Compression of Mixture of Experts LLMs via Residual Restoration
- arxiv url: http://arxiv.org/abs/2503.06881v1
- Date: Mon, 10 Mar 2025 03:15:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:46:45.767188
- Title: ResMoE: Space-efficient Compression of Mixture of Experts LLMs via Residual Restoration
- Title(参考訳): ResMoE: 残留修復によるLLMの宇宙効率圧縮
- Authors: Mengting Ai, Tianxin Wei, Yifan Chen, Zhichen Zeng, Ritchie Zhao, Girish Varatkar, Bita Darvish Rouhani, Xianfeng Tang, Hanghang Tong, Jingrui He,
- Abstract要約: 複数現象言語モデルのバックボーンであるMixture-of-Experts (MoE) Transformerは、各入力トークンに対して少数のモデルパラメータのみをアクティベートすることで、空間性を利用する。
ResMoEは、Wasserstein Barycenterを利用した革新的なMoE近似フレームワークで、共通の専門家(バリセンターエキスパート)を抽出し、このバリセンターエキスパートと元の専門家の間の残差を近似する。
- 参考スコア(独自算出の注目度): 61.579842548990754
- License:
- Abstract: Mixture-of-Experts (MoE) Transformer, the backbone architecture of multiple phenomenal language models, leverages sparsity by activating only a fraction of model parameters for each input token. The sparse structure, while allowing constant time costs, results in space inefficiency: we still need to load all the model parameters during inference. We introduce ResMoE, an innovative MoE approximation framework that utilizes Wasserstein barycenter to extract a common expert (barycenter expert) and approximate the residuals between this barycenter expert and the original ones. ResMoE enhances the space efficiency for inference of large-scale MoE Transformers in a one-shot and data-agnostic manner without retraining while maintaining minimal accuracy loss, thereby paving the way for broader accessibility to large language models. We demonstrate the effectiveness of ResMoE through extensive experiments on Switch Transformer, Mixtral, and DeepSeekMoE models. The results show that ResMoE can reduce the number of parameters in an expert by up to 75% while maintaining comparable performance. The code is available at https://github.com/iDEA-iSAIL-Lab-UIUC/ResMoE.
- Abstract(参考訳): 複数現象言語モデルのバックボーンアーキテクチャであるMixture-of-Experts (MoE) Transformerは、各入力トークンに対して少数のモデルパラメータのみをアクティベートすることで、空間性を利用する。
スパース構造は、一定の時間的コストを許容しながら、空間的非効率をもたらす。
ResMoEは、Wasserstein Barycenterを利用した革新的なMoE近似フレームワークで、共通の専門家(バリセンターエキスパート)を抽出し、このバリセンターエキスパートと元の専門家の間の残差を近似する。
ResMoEは、大規模なMoEトランスフォーマーを1ショットでデータに依存しない方法で推論する空間効率を高め、最小限の精度の損失を保ちながら再トレーニングをすることなく、大きな言語モデルへの幅広いアクセシビリティを実現する。
本稿では、Switch Transformer、Mixtral、DeepSeekMoEモデルに関する広範な実験を通してResMoEの有効性を示す。
その結果、ResMoEは、同等のパフォーマンスを維持しながら、専門家のパラメータ数を最大75%削減できることがわかった。
コードはhttps://github.com/iDEA-iSAIL-Lab-UIUC/ResMoEで公開されている。
関連論文リスト
- CMoE: Fast Carving of Mixture-of-Experts for Efficient LLM Inference [33.871080938643566]
大規模言語モデル(LLM)はモデルパラメータのスケーリングによって素晴らしいパフォーマンスを達成するが、これはかなりの推論オーバーヘッドを伴う。
我々は,高密度モデルからMoEモデルを効率的に彫る新しいフレームワークであるCMoEを提案する。
CMoEは、効率的なエキスパートグループ化と軽量適応によって、優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2025-02-06T14:05:30Z) - Layerwise Recurrent Router for Mixture-of-Experts [42.36093735411238]
Mixture-of-Experts (MoE)アーキテクチャは、トレーニングコストを大幅に増加させることなく、モデルサイズをスケールできる能力で際立っている。
現在のMoEモデルはパラメータ非効率をしばしば表示する。
我々はMixture-of-Experts(RMoE)のためのLayerwise Recurrent Routerを紹介する。
論文 参考訳(メタデータ) (2024-08-13T10:25:13Z) - XMoE: Sparse Models with Fine-grained and Adaptive Expert Selection [30.687511115573038]
ツールは、スパースMoEモデルの有効性と効率を高めるために設計された新しいMoEである。
パフォーマンスを犠牲にすることなく、MoE層の計算負荷を50%以上削減しながら、モデルパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-02-27T08:18:02Z) - MatFormer: Nested Transformer for Elastic Inference [91.45687988953435]
MatFormerは、多様なデプロイメント制約にまたがる弾性推論を提供するように設計された、新しいTransformerアーキテクチャである。
MatFormerは、標準的なTransformerモデルにネストフィードフォワードネットワーク(FFN)ブロック構造を組み込むことで、これを実現している。
8億5000万デコーダのみのMatFormer言語モデル(MatLM)により,5億2200万から8億5千万のパラメータにまたがる複数の小さなモデルを抽出できることを示す。
論文 参考訳(メタデータ) (2023-10-11T17:57:14Z) - AutoMoE: Heterogeneous Mixture-of-Experts with Adaptive Computation for
Efficient Neural Machine Translation [104.0979785739202]
ニューラルネットワーク翻訳(NMT)タスクにおいて、Mixture-of-Expert(MoE)モデルが最先端のパフォーマンスを得た。
既存のMoEモデルは、ネットワーク全体に同じサイズの専門家が一様に配置される均質な設計を主に考慮している。
計算制約下での不均一なMoEを設計するためのフレームワークであるAutoMoEを開発した。
論文 参考訳(メタデータ) (2022-10-14T05:32:17Z) - Task-Specific Expert Pruning for Sparse Mixture-of-Experts [105.20605021416276]
Mixture-of-Experts (MoE) モデルは大規模な事前トレーニングには強力である。
MoEはクラウドやモバイル環境にデプロイするのは難しい。
本稿では,目標下流タスクの非専門的専門家を段階的に降ろす方法を提案する。
論文 参考訳(メタデータ) (2022-06-01T07:09:01Z) - Taming Sparsely Activated Transformer with Stochastic Experts [76.0711573018493]
わずかに活性化されたモデル(SAM)は、計算コストを大幅に増加させることなく、非常に大量のパラメータを持つように容易にスケールすることができる。
本稿では,新しいエキスパートベースモデルTHOR(Transformer witH StOchastic ExpeRts)を提案する。
Switch Transformerのような古典的なエキスパートベースのモデルとは異なり、THORの専門家はトレーニングと推論の間、各入力に対してランダムにアクティベートされる。
論文 参考訳(メタデータ) (2021-10-08T17:15:47Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。