Hoist with His Own Petard: Inducing Guardrails to Facilitate Denial-of-Service Attacks on Retrieval-Augmented Generation of LLMs
- URL: http://arxiv.org/abs/2504.21680v1
- Date: Wed, 30 Apr 2025 14:18:11 GMT
- Title: Hoist with His Own Petard: Inducing Guardrails to Facilitate Denial-of-Service Attacks on Retrieval-Augmented Generation of LLMs
- Authors: Pan Suo, Yu-Ming Shang, San-Chuan Guo, Xi Zhang,
- Abstract summary: Retrieval-Augmented Generation (RAG) integrates Large Language Models (LLMs) with external knowledge bases, improving output quality while introducing new security risks.<n>Existing studies on RAG vulnerabilities typically focus on exploiting the retrieval mechanism to inject erroneous knowledge or malicious texts, inducing incorrect outputs.<n>In this paper, we uncover a novel vulnerability: the safety guardrails of LLMs, while designed for protection, can also be exploited as an attack vector by adversaries. Building on this vulnerability, we propose MutedRAG, a novel denial-of-service attack that reversely leverages the guardrails to undermine the availability of
- Score: 8.09404178079053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) integrates Large Language Models (LLMs) with external knowledge bases, improving output quality while introducing new security risks. Existing studies on RAG vulnerabilities typically focus on exploiting the retrieval mechanism to inject erroneous knowledge or malicious texts, inducing incorrect outputs. However, these approaches overlook critical weaknesses within LLMs, leaving important attack vectors unexplored and limiting the scope and efficiency of attacks. In this paper, we uncover a novel vulnerability: the safety guardrails of LLMs, while designed for protection, can also be exploited as an attack vector by adversaries. Building on this vulnerability, we propose MutedRAG, a novel denial-of-service attack that reversely leverages the guardrails of LLMs to undermine the availability of RAG systems. By injecting minimalistic jailbreak texts, such as "\textit{How to build a bomb}", into the knowledge base, MutedRAG intentionally triggers the LLM's safety guardrails, causing the system to reject legitimate queries. Besides, due to the high sensitivity of guardrails, a single jailbreak sample can affect multiple queries, effectively amplifying the efficiency of attacks while reducing their costs. Experimental results on three datasets demonstrate that MutedRAG achieves an attack success rate exceeding 60% in many scenarios, requiring only less than one malicious text to each target query on average. In addition, we evaluate potential defense strategies against MutedRAG, finding that some of current mechanisms are insufficient to mitigate this threat, underscoring the urgent need for more robust solutions.
Related papers
- PR-Attack: Coordinated Prompt-RAG Attacks on Retrieval-Augmented Generation in Large Language Models via Bilevel Optimization [13.751251342738225]
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of applications.<n>They also exhibit inherent limitations, such as outdated knowledge and susceptibility to hallucinations.<n>Recent efforts have focused on the security of RAG-based LLMs, yet existing attack methods face three critical challenges.<n>We propose coordinated Prompt-RAG attack (PR-attack), a novel optimization-driven attack that introduces a small number of poisoned texts into the knowledge database.
arXiv Detail & Related papers (2025-04-10T13:09:50Z) - Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversation is a novel multi-turn jailbreak framework.<n>It reformulates harmful queries into benign reasoning tasks.<n>We show that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios.
arXiv Detail & Related papers (2025-02-16T09:27:44Z) - Enhancing Model Defense Against Jailbreaks with Proactive Safety Reasoning [21.423429565221383]
Large language models (LLMs) are vital for a wide range of applications yet remain susceptible to jailbreak threats.<n>We propose a novel defense strategy, Safety Chain-of-Thought (SCoT), which harnesses the enhanced textitreasoning capabilities of LLMs for proactive assessment of harmful inputs.
arXiv Detail & Related papers (2025-01-31T14:45:23Z) - Targeting the Core: A Simple and Effective Method to Attack RAG-based Agents via Direct LLM Manipulation [4.241100280846233]
AI agents, powered by large language models (LLMs), have transformed human-computer interactions by enabling seamless, natural, and context-aware communication.<n>This paper investigates a critical vulnerability: adversarial attacks targeting the LLM core within AI agents.
arXiv Detail & Related papers (2024-12-05T18:38:30Z) - The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense [56.32083100401117]
The vulnerability of Vision Large Language Models (VLLMs) to jailbreak attacks appears as no surprise.<n>Recent defense mechanisms against these attacks have reached near-saturation performance on benchmark evaluations.
arXiv Detail & Related papers (2024-11-13T07:57:19Z) - HijackRAG: Hijacking Attacks against Retrieval-Augmented Large Language Models [18.301965456681764]
We reveal a novel vulnerability, the retrieval prompt hijack attack (HijackRAG)
HijackRAG enables attackers to manipulate the retrieval mechanisms of RAG systems by injecting malicious texts into the knowledge database.
We propose both black-box and white-box attack strategies tailored to different levels of the attacker's knowledge.
arXiv Detail & Related papers (2024-10-30T09:15:51Z) - Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities [63.603861880022954]
We introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability.
Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100% ASR on various open-source LLMs.
It exhibits strong attack transferability to closed-source models, achieving 99% ASR on GPT-3.5 and 49% ASR on GPT-4, despite being optimized solely on Llama3.
arXiv Detail & Related papers (2024-10-24T06:36:12Z) - LLMs can be Dangerous Reasoners: Analyzing-based Jailbreak Attack on Large Language Models [20.154877919740322]
Existing jailbreak methods suffer from two main limitations: reliance on complicated prompt engineering and iterative optimization.
We propose an efficient jailbreak attack method, Analyzing-based Jailbreak (ABJ), which leverages the advanced reasoning capability of LLMs to autonomously generate harmful content.
arXiv Detail & Related papers (2024-07-23T06:14:41Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
We present Purple-teaming LLMs with Adversarial Defender training (PAD)
PAD is a pipeline designed to safeguard LLMs by novelly incorporating the red-teaming (attack) and blue-teaming (safety training) techniques.
PAD significantly outperforms existing baselines in both finding effective attacks and establishing a robust safe guardrail.
arXiv Detail & Related papers (2024-07-01T23:25:30Z) - Jailbreaking as a Reward Misspecification Problem [80.52431374743998]
We propose a novel perspective that attributes this vulnerability to reward misspecification during the alignment process.
We introduce a metric ReGap to quantify the extent of reward misspecification and demonstrate its effectiveness.
We present ReMiss, a system for automated red teaming that generates adversarial prompts in a reward-misspecified space.
arXiv Detail & Related papers (2024-06-20T15:12:27Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.<n>Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.<n>We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.