論文の概要: NukesFormers: Unpaired Hyperspectral Image Generation with Non-Uniform Domain Alignment
- arxiv url: http://arxiv.org/abs/2503.07004v1
- Date: Mon, 10 Mar 2025 07:38:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:51:42.534511
- Title: NukesFormers: Unpaired Hyperspectral Image Generation with Non-Uniform Domain Alignment
- Title(参考訳): NukesFormers: 非一様領域アライメントによる非対向ハイパースペクトル画像生成
- Authors: Jiaojiao Li, Shiyao Duan, Haitao XU, Rui Song,
- Abstract要約: 本研究では,非ペアデータの幾何学的およびスペクトル的分布を整列するために,コントラッシブラーニングを導入する。
二重領域入力の周波数表現をマッピングし、ヌル空間を徹底的にマイニングする。
新たなベンチマークをUnHIGで確立している。
- 参考スコア(独自算出の注目度): 8.49203851084488
- License:
- Abstract: The inherent difficulty in acquiring accurately co-registered RGB-hyperspectral image (HSI) pairs has significantly impeded the practical deployment of current data-driven Hyperspectral Image Generation (HIG) networks in engineering applications. Gleichzeitig, the ill-posed nature of the aligning constraints, compounded with the complexities of mining cross-domain features, also hinders the advancement of unpaired HIG (UnHIG) tasks. In this paper, we conquer these challenges by modeling the UnHIG to range space interaction and compensations of null space through Range-Null Space Decomposition (RND) methodology. Specifically, the introduced contrastive learning effectively aligns the geometric and spectral distributions of unpaired data by building the interaction of range space, considering the consistent feature in degradation process. Following this, we map the frequency representations of dual-domain input and thoroughly mining the null space, like degraded and high-frequency components, through the proposed Non-uniform Kolmogorov-Arnold Networks. Extensive comparative experiments demonstrate that it establishes a new benchmark in UnHIG.
- Abstract(参考訳): 高精度に登録されたRGB-ハイパースペクトル画像(HSI)ペアを取得することの難しさは、エンジニアリングアプリケーションにおける現在のデータ駆動ハイパースペクトル画像生成(HIG)ネットワークの実践的展開を著しく妨げている。
整合性制約の誤った性質であるグライヒゼイチグは、クロスドメインな特徴のマイニングの複雑さと混ざり合っており、未完成のHIG(UnHIG)タスクの進行を妨げる。
本稿では,UnHIGをモデル化して,空間相互作用とnull空間の補償をレンジ・ヌル空間分解(RND)手法で行うことにより,これらの課題を克服する。
具体的には, 劣化過程における一貫した特徴を考慮し, 距離空間の相互作用を構築することにより, 非対数データの幾何学的およびスペクトル的分布を効果的に整列させる。
次に、二重領域入力の周波数表現をマッピングし、非一様コルモゴロフ・アルノルドネットワークを用いて、劣化成分や高周波成分のようなヌル空間を徹底的にマイニングする。
大規模な比較実験により、UnHIGの新しいベンチマークが確立された。
関連論文リスト
- HSRMamba: Contextual Spatial-Spectral State Space Model for Single Hyperspectral Super-Resolution [41.93421212397078]
Mambaは、その強力なグローバルモデリング能力と線形計算複雑性のために、視覚タスクにおいて例外的な性能を示した。
HSISRでは、Mambaは画像を1Dシーケンスに変換することで、局所的に隣接するピクセル間の空間-スペクトル構造関係を無視しているため、課題に直面している。
本研究では,HSISRにおける空間スペクトルモデリング状態空間モデルHSRMambaを提案する。
論文 参考訳(メタデータ) (2025-01-30T17:10:53Z) - Unleashing Correlation and Continuity for Hyperspectral Reconstruction from RGB Images [64.80875911446937]
RGB画像からのHSI再構成のための相関連続性ネットワーク(CCNet)を提案する。
局所スペクトルの相関について,GrSCM(Group-wise Spectral correlation Modeling)モジュールを紹介する。
グローバルスペクトルの連続性のために、我々はNeSCMモジュールを設計する。
論文 参考訳(メタデータ) (2025-01-02T15:14:40Z) - HSLiNets: Hyperspectral Image and LiDAR Data Fusion Using Efficient Dual Non-Linear Feature Learning Networks [7.06787067270941]
新しい線形特徴空間におけるハイパースペクトルイメージング(HSI)とLiDARデータの統合は、HSIに固有の高次元性と冗長性に起因する課題に対する有望な解決策を提供する。
本研究では、双方向逆畳み込み畳み込みニューラルネットワーク(CNN)経路と特殊空間解析ブロックを併用した、二重線型融合空間フレームワークを提案する。
提案手法は,データ処理や分類精度を向上するだけでなく,トランスフォーマーなどの先進モデルに係わる計算負担を軽減する。
論文 参考訳(メタデータ) (2024-11-30T01:08:08Z) - DCN-T: Dual Context Network with Transformer for Hyperspectral Image
Classification [109.09061514799413]
複雑な撮像条件による空間変動のため,HSI分類は困難である。
本稿では,HSIを高品質な三スペクトル画像に変換する三スペクトル画像生成パイプラインを提案する。
提案手法は,HSI分類における最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-04-19T18:32:52Z) - Hyperspectral Image Super-Resolution via Dual-domain Network Based on
Hybrid Convolution [6.3814314790000415]
本稿ではハイブリッド畳み込み(SRDNet)に基づく新しいHSI超解像アルゴリズムを提案する。
スペクトル間自己相似性を捉えるため、空間領域に自己注意学習機構(HSL)を考案する。
HSIの知覚品質をさらに向上するため、周波数領域のモデルを最適化するために周波数損失(HFL)を導入した。
論文 参考訳(メタデータ) (2023-04-10T13:51:28Z) - Spectral Enhanced Rectangle Transformer for Hyperspectral Image
Denoising [64.11157141177208]
ハイパースペクトル画像の空間的およびスペクトル的相関をモデル化するスペクトル拡張矩形変換器を提案する。
前者に対しては、長方形自己アテンションを水平および垂直に利用し、空間領域における非局所的類似性を捉える。
後者のために,空間スペクトル立方体の大域的低ランク特性を抽出し,雑音を抑制するスペクトル拡張モジュールを設計する。
論文 参考訳(メタデータ) (2023-04-03T09:42:13Z) - Maximum Spatial Perturbation Consistency for Unpaired Image-to-Image
Translation [56.44946660061753]
本稿では,最大空間摂動整合(MSPC)と呼ばれる普遍正規化手法を提案する。
MSPCは空間摂動関数(T)と変換演算子(G)を可換(TG = GT)に強制する。
提案手法は,ほとんどのI2Iベンチマークにおいて最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2022-03-23T19:59:04Z) - Implicit Neural Representation Learning for Hyperspectral Image
Super-Resolution [0.0]
Inlicit Neural Representations (INR)は、新しい効果的な表現として進歩を遂げている。
本稿では、空間座標を対応するスペクトル放射率値にマッピングする連続関数により、HSIを表すINRに基づく新しいHSI再構成モデルを提案する。
論文 参考訳(メタデータ) (2021-12-20T14:07:54Z) - Non-local Meets Global: An Iterative Paradigm for Hyperspectral Image
Restoration [66.68541690283068]
ハイパースペクトル画像復元のための空間特性とスペクトル特性を組み合わせた統一パラダイムを提案する。
提案するパラダイムは,非局所空間デノゲーションと光計算の複雑さから,性能上の優位性を享受する。
HSI復調、圧縮再構成、塗装タスクの実験は、シミュレーションと実際のデータセットの両方で、その優位性を示している。
論文 参考訳(メタデータ) (2020-10-24T15:53:56Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。