論文の概要: Zero-Shot Hashing Based on Reconstruction With Part Alignment
- arxiv url: http://arxiv.org/abs/2503.07037v1
- Date: Mon, 10 Mar 2025 08:22:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:50:14.863769
- Title: Zero-Shot Hashing Based on Reconstruction With Part Alignment
- Title(参考訳): 部分アライメントによる再構成に基づくゼロショットハッシュ
- Authors: Yan Jiang, Zhongmiao Qi, Jianhao Li, Jiangbo Qian, Chong Wang, Yu Xin,
- Abstract要約: RAZHと呼ばれる新しいゼロショットハッシュ法を提案する。
まず、クラスタリングアルゴリズムを用いて、属性マッチングのための画像部品に類似したパッチをグループ化する。
次に、画像パーツを対応する属性ベクトルに置き換え、各部分を最も近い属性に徐々に整合させる。
- 参考スコア(独自算出の注目度): 12.997382090145845
- License:
- Abstract: Hashing algorithms have been widely used in large-scale image retrieval tasks, especially for seen class data. Zero-shot hashing algorithms have been proposed to handle unseen class data. The key technique in these algorithms involves learning features from seen classes and transferring them to unseen classes, that is, aligning the feature embeddings between the seen and unseen classes. Most existing zero-shot hashing algorithms use the shared attributes between the two classes of interest to complete alignment tasks. However, the attributes are always described for a whole image, even though they represent specific parts of the image. Hence, these methods ignore the importance of aligning attributes with the corresponding image parts, which explicitly introduces noise and reduces the accuracy achieved when aligning the features of seen and unseen classes. To address this problem, we propose a new zero-shot hashing method called RAZH. We first use a clustering algorithm to group similar patches to image parts for attribute matching and then replace the image parts with the corresponding attribute vectors, gradually aligning each part with its nearest attribute. Extensive evaluation results demonstrate the superiority of the RAZH method over several state-of-the-art methods.
- Abstract(参考訳): ハッシュアルゴリズムは大規模な画像検索タスク、特にクラスデータに広く用いられている。
目に見えないクラスデータを扱うためにゼロショットハッシュアルゴリズムが提案されている。
これらのアルゴリズムのキーとなるテクニックは、見たクラスから特徴を学習し、見えないクラス、すなわち見えないクラスと見えないクラスの間に機能の埋め込みを整列させることである。
既存のゼロショットハッシュアルゴリズムのほとんどは、アライメントタスクを完了させるために、2つのクラス間の共有属性を使用する。
しかし、属性は画像の特定の部分を表現しているにもかかわらず、画像全体に対して常に記述される。
したがって、これらの手法は、属性を対応する画像部分と整列することの重要性を無視し、ノイズを明示的に導入し、見知らぬクラスの特徴を整列する際の精度を低下させる。
そこで本研究では,RAZHと呼ばれるゼロショットハッシュ法を提案する。
まず、クラスタリングアルゴリズムを用いて、属性マッチングに類似したパッチを画像部品に分類し、画像部品を対応する属性ベクトルに置き換え、各部品を最も近い属性に徐々に整列させる。
その結果, RAZH法はいくつかの最先端手法よりも優れていた。
関連論文リスト
- Contrastive Mean-Shift Learning for Generalized Category Discovery [45.19923199324919]
一般化圏発見(GCD)の問題に対処する。
我々は平均シフトアルゴリズム、すなわちモード探索のための強力な手法を再検討し、これを対照的な学習フレームワークに組み込む。
提案手法はContrastive Mean-Shift(CMS)学習と呼ばれ,より優れたクラスタリング特性を持つ表現を生成するためにイメージエンコーダを訓練する。
論文 参考訳(メタデータ) (2024-04-15T04:31:24Z) - Attributes Grouping and Mining Hashing for Fine-Grained Image Retrieval [24.8065557159198]
微粒な画像検索のための属性グループとマイニングハッシュ(AGMH)を提案する。
AGMHはカテゴリ固有の視覚属性を複数の記述子にグループ化し、包括的特徴表現を生成する。
AGMHは、きめ細かいベンチマークデータセットの最先端メソッドに対して、一貫して最高のパフォーマンスを得る。
論文 参考訳(メタデータ) (2023-11-10T14:01:56Z) - Learning Semantic Segmentation with Query Points Supervision on Aerial Images [57.09251327650334]
セマンティックセグメンテーションアルゴリズムを学習するための弱教師付き学習アルゴリズムを提案する。
提案手法は正確なセマンティックセグメンテーションを行い,手作業のアノテーションに要するコストと時間を大幅に削減することで効率を向上する。
論文 参考訳(メタデータ) (2023-09-11T14:32:04Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
本稿では,事前学習したGANを用いて,高品質な画像を生成することで,半教師付き部分分割タスクに対処することに焦点を当てる。
特に、アノテータ学習を学習から学習までの問題として定式化する。
提案手法は,実画像,生成された画像,さらには解析的に描画された画像を含む,幅広いラベル付き画像からアノテータを学習可能であることを示す。
論文 参考訳(メタデータ) (2022-11-06T01:29:22Z) - iCAR: Bridging Image Classification and Image-text Alignment for Visual
Recognition [33.2800417526215]
画像分類は,過去10年間の視覚的表現学習における主要なアプローチである。
しかし、画像テキストアライメントによる視覚学習は、特にゼロショット認識において、有望なパフォーマンスを示すようになった。
本稿では,2つの学習課題を効果的に橋渡しする3つの適応型深層融合法を提案する。
論文 参考訳(メタデータ) (2022-04-22T15:27:21Z) - Improving Few-shot Learning with Weakly-supervised Object Localization [24.3569501375842]
画像のクラス関連領域から特徴を抽出してクラス表現を生成する新しいフレームワークを提案する。
提案手法は, miniImageNet および tieredImageNet ベンチマークにおいて,ベースライン数ショットモデルよりも優れている。
論文 参考訳(メタデータ) (2021-05-25T07:39:32Z) - Seed the Views: Hierarchical Semantic Alignment for Contrastive
Representation Learning [116.91819311885166]
一つの画像から生成されたビューをtextbfCross-samples や Multi-level representation に拡張することで,階層的なセマンティックアライメント戦略を提案する。
提案手法はCsMlと呼ばれ,サンプル間の多層視覚表現を堅牢な方法で統合する機能を備えている。
論文 参考訳(メタデータ) (2020-12-04T17:26:24Z) - Grafit: Learning fine-grained image representations with coarse labels [114.17782143848315]
本稿では,学習ラベルの提供するものよりも細かな表現を学習する問題に対処する。
粗いラベルと下層の細粒度潜在空間を併用することにより、カテゴリレベルの検索手法の精度を大幅に向上させる。
論文 参考訳(メタデータ) (2020-11-25T19:06:26Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
2つのニューラルコアテンションを分類器に組み込んで、画像間のセマンティックな類似点と相違点をキャプチャする。
オブジェクトパターン学習の強化に加えて、コアテンションは他の関連する画像からのコンテキストを活用して、ローカライズマップの推論を改善することができる。
提案アルゴリズムは,これらすべての設定に対して新たな最先端性を設定し,その有効性と一般化性を示す。
論文 参考訳(メタデータ) (2020-07-03T21:53:46Z) - SCAN: Learning to Classify Images without Labels [73.69513783788622]
機能学習とクラスタリングを分離する2段階のアプローチを提唱する。
表現学習からの自己教師型タスクを用いて意味論的意味のある特徴を得る。
我々は、ImageNet上で有望な結果を得、低データ体制下では、いくつかの半教師付き学習方法より優れています。
論文 参考訳(メタデータ) (2020-05-25T18:12:33Z) - One-Shot Image Classification by Learning to Restore Prototypes [11.448423413463916]
ワンショット画像分類は、カテゴリ毎に1つの画像しか持たないデータセット上で、イメージ分類器を訓練することを目的としている。
ワンショット学習では、既存のメトリック学習アプローチは、単一のトレーニングイメージがクラスを代表するものではない可能性があるため、パフォーマンスが低下する。
本稿では,RestoreNet で表される単純な回帰モデルを提案する。画像特徴のクラス変換を学習し,特徴空間のクラス中心に画像を移動させる。
論文 参考訳(メタデータ) (2020-05-04T02:11:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。