論文の概要: Strategies for political-statement segmentation and labelling in unstructured text
- arxiv url: http://arxiv.org/abs/2503.07179v1
- Date: Mon, 10 Mar 2025 10:56:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:49:52.694761
- Title: Strategies for political-statement segmentation and labelling in unstructured text
- Title(参考訳): 非構造化テキストにおける政治声明のセグメンテーションとラベリングの戦略
- Authors: Dmitry Nikolaev, Sean Papay,
- Abstract要約: MARPORプロジェクトの参加者によって、バイステートメントな政治的スタンスラベルを持つマニフェストの大規模なコーパスが作成されている。
本稿では,テキストデータから文を共同で分割・分類することのできる,統一された分割・ラベルのフレームワークを提案し,検証する。
本手法は,政治宣言の原文に適用した場合,競争精度が向上することを示し,英国庶民院の記録に応用することで,その研究可能性を示す。
- 参考スコア(独自算出の注目度): 2.5338097608867542
- License:
- Abstract: Analysis of parliamentary speeches and political-party manifestos has become an integral area of computational study of political texts. While speeches have been overwhelmingly analysed using unsupervised methods, a large corpus of manifestos with by-statement political-stance labels has been created by the participants of the MARPOR project. It has been recently shown that these labels can be predicted by a neural model; however, the current approach relies on provided statement boundaries, limiting out-of-domain applicability. In this work, we propose and test a range of unified split-and-label frameworks -- based on linear-chain CRFs, fine-tuned text-to-text models, and the combination of in-context learning with constrained decoding -- that can be used to jointly segment and classify statements from raw textual data. We show that our approaches achieve competitive accuracy when applied to raw text of political manifestos, and then demonstrate the research potential of our method by applying it to the records of the UK House of Commons and tracing the political trajectories of four major parties in the last three decades.
- Abstract(参考訳): 議会演説と政党宣言の分析は、政治文書の計算研究の不可欠な領域となっている。
言論は教師なしの手法で圧倒的に分析されてきたが、MARPORプロジェクトの参加者によって、バイステートメントな政治的スタンスラベルを持つマニフェストの大規模なコーパスが作成されている。
最近、これらのラベルはニューラルモデルによって予測できることが示されているが、現在のアプローチは提供されたステートメント境界に依存しており、ドメイン外適用性を制限する。
本研究では,線形チェーンCRF,微調整されたテキストからテキストへのモデル,および制約付き復号化によるテキスト内学習の組み合わせに基づいて,テキストデータから文を共同で分割・分類する,一連の統一型分割・ラベルフレームワークの提案とテストを行う。
我々は,政治宣言の原文に適用した場合の競争的正確性を示し,それを英国庶民院の記録に適用し,過去30年間の4大政党の政治的軌跡を追跡することによって,我々の手法の研究可能性を示す。
関連論文リスト
- Concept Navigation and Classification via Open Source Large Language Model Processing [0.0]
本稿では,オープンソースのLarge Language Models (LLMs) を用いたテキストデータから潜在構造を検出・分類するための新しい手法を提案する。
提案手法は,自動要約とループ内検証を組み合わせることで,構造同定の精度と解釈性を向上させる。
論文 参考訳(メタデータ) (2025-02-07T08:42:34Z) - Few-shot Policy (de)composition in Conversational Question Answering [54.259440408606515]
本稿では,大規模言語モデル(LLM)を用いて数ショット設定でポリシーコンプライアンスを検出するニューラルシンボリックフレームワークを提案する。
提案手法は,回答すべきサブクエストを抽出し,文脈情報から真理値を割り当て,与えられたポリシーから論理文の集合を明示的に生成することで,政策コンプライアンスに関する会話に対して健全な理由を示す。
本手法は,PCDおよび会話機械読解ベンチマークであるShARCに適用し,タスク固有の微調整を伴わずに競合性能を示す。
論文 参考訳(メタデータ) (2025-01-20T08:40:15Z) - AgoraSpeech: A multi-annotated comprehensive dataset of political discourse through the lens of humans and AI [1.3060410279656598]
アゴラ・スペーチ(AgoraSpeech)は、ギリシャ国民選挙中の2023年の6つの政党による171の政治演説を精巧にキュレートした高品質なデータセットである。
このデータセットには、テキスト分類、トピック識別、感情分析、名前付きエンティティ認識、分極、ポピュリズム検出の6つの自然言語処理(NLP)タスクのためのアノテーション(1段落)が含まれている。
論文 参考訳(メタデータ) (2025-01-09T18:17:59Z) - Con-ReCall: Detecting Pre-training Data in LLMs via Contrastive Decoding [118.75567341513897]
既存のメソッドは通常、ターゲットテキストを分離して分析するか、非メンバーコンテキストでのみ分析する。
Con-ReCallは、メンバと非メンバのコンテキストによって誘導される非対称な分布シフトを利用する新しいアプローチである。
論文 参考訳(メタデータ) (2024-09-05T09:10:38Z) - Political Leaning Inference through Plurinational Scenarios [4.899818550820576]
この研究は、スペインにおける3つの多様な地域(バスク州、カタルーニャ州、ガリシア州)に焦点を当て、多党の分類の様々な方法を探究する。
我々は、リツイートから得られた教師なしユーザ表現と、その後の政治的傾き検出に使用される2段階の手法を用いる。
論文 参考訳(メタデータ) (2024-06-12T07:42:12Z) - Modelling Political Coalition Negotiations Using LLM-based Agents [53.934372246390495]
我々は、新しいNLPタスクとして連立交渉を導入し、それを大規模言語モデルに基づくエージェント間の交渉としてモデル化する。
我々は、欧州政党の宣言とこれらの国における多数の選挙に関する連立協定を含む多言語データセット「POLCA」を導入する。
本稿では、政党間の連立交渉の過程をシミュレートし、その結果を予測するために、階層的なマルコフ決定プロセスを提案する。
論文 参考訳(メタデータ) (2024-02-18T21:28:06Z) - Multilingual estimation of political-party positioning: From label
aggregation to long-input Transformers [3.651047982634467]
我々は、政党マニフェストの自動スケーリング分析に2つのアプローチを実装し、比較する。
このタスクは最先端のモデルによって効率よく解決でき、ラベルアグリゲーションが最良の結果をもたらすことが判明した。
論文 参考訳(メタデータ) (2023-10-19T08:34:48Z) - An Inclusive Notion of Text [69.36678873492373]
テキストの概念の明確さは再現可能で一般化可能なNLPにとって不可欠である,と我々は主張する。
言語的および非言語的要素の2層分類を導入し,NLPモデリングに使用することができる。
論文 参考訳(メタデータ) (2022-11-10T14:26:43Z) - Contextual information integration for stance detection via
cross-attention [59.662413798388485]
スタンス検出は、著者の目標に対する姿勢を特定することを扱う。
既存のスタンス検出モデルの多くは、関連するコンテキスト情報を考慮していないため、制限されている。
文脈情報をテキストとして統合する手法を提案する。
論文 参考訳(メタデータ) (2022-11-03T15:04:29Z) - Optimizing text representations to capture (dis)similarity between
political parties [1.2891210250935146]
政党間の相互類似性をモデル化する問題を考察する。
我々の研究課題は、ロバストなテキスト表現を作成するのに必要な構造情報のレベルである。
我々は、2021年の連邦選挙におけるドイツの政党の宣言について、我々のモデルを評価した。
論文 参考訳(メタデータ) (2022-10-21T14:24:57Z) - The Whole Truth and Nothing But the Truth: Faithful and Controllable
Dialogue Response Generation with Dataflow Transduction and Constrained
Decoding [65.34601470417967]
本稿では,ニューラルネットワークモデリングとルールベース生成の強みを組み合わせた対話応答生成のためのハイブリッドアーキテクチャについて述べる。
本実験により, 本システムは, 流布性, 妥当性, 真理性の評価において, ルールベースおよび学習的アプローチの両方に優れることがわかった。
論文 参考訳(メタデータ) (2022-09-16T09:00:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。