論文の概要: MC-GRU:a Multi-Channel GRU network for generalized nonlinear structural response prediction across structures
- arxiv url: http://arxiv.org/abs/2503.07258v1
- Date: Mon, 10 Mar 2025 12:41:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:46:40.732971
- Title: MC-GRU:a Multi-Channel GRU network for generalized nonlinear structural response prediction across structures
- Title(参考訳): MC-GRU:汎用非線形構造応答予測のためのマルチチャネルGRUネットワーク
- Authors: Shan He, Ruiyang Zhang,
- Abstract要約: 本稿では, 一般化された非線形構造応答予測を実現するために, MC-GRU(Multi- Channel gated Recurrent Unit)ネットワークを提案する。
提案したMC-GRUの性能は, 単自由度線形系, ヒステリック・ボークウェン系, 非線形鉄筋コンクリート柱など, 一連のケーススタディにより検証された。
- 参考スコア(独自算出の注目度): 2.2453371700804627
- License:
- Abstract: Accurate prediction of seismic responses and quantification of structural damage are critical in civil engineering. Traditional approaches such as finite element analysis could lack computational efficiency, especially for complex structural systems under extreme hazards. Recently, artificial intelligence has provided an alternative to efficiently model highly nonlinear behaviors. However, existing models face challenges in generalizing across diverse structural systems. This paper proposes a novel multi-channel gated recurrent unit (MC-GRU) network aimed at achieving generalized nonlinear structural response prediction for varying structures. The key concept lies in the integration of a multi-channel input mechanism to GRU with an extra input of structural information to the candidate hidden state, which enables the network to learn the dynamic characteristics of diverse structures and thus empower the generalizability and adaptiveness to unseen structures. The performance of the proposed MC-GRU is validated through a series of case studies, including a single-degree-of-freedom linear system, a hysteretic Bouc-Wen system, and a nonlinear reinforced concrete column from experimental testing. Results indicate that the proposed MC-GRU overcomes the major generalizability issues of existing methods, with capability of accurately inferring seismic responses of varying structures. Additionally, it demonstrates enhanced capabilities in representing nonlinear structural dynamics compared to traditional models such as GRU and LSTM.
- Abstract(参考訳): 地震応答の正確な予測と構造損傷の定量化は土木工学において重要である。
有限要素解析のような従来の手法は計算効率を欠く可能性がある。
近年、人工知能は、高非線形な振る舞いを効率的にモデル化する代替手段を提供している。
しかし、既存のモデルは様々な構造系にまたがる一般化の課題に直面している。
本稿では, 様々な構造に対して, 一般化された非線形構造応答予測を実現するために, MC-GRU(Multi- Channel gated Recurrent Unit)ネットワークを提案する。
鍵となる概念は、GRUへのマルチチャネル入力機構の統合であり、候補隠れ状態への構造情報の付加的な入力により、ネットワークは多様な構造の動的特性を学習し、その結果、目に見えない構造への一般化性と適応性を高めることができる。
提案したMC-GRUの性能は, 単自由度線形系, ヒステリック・ボークウェン系, 非線形鉄筋コンクリート柱などを含む一連のケーススタディにより検証された。
その結果,提案したMC-GRUは, 各種構造物の地震応答を正確に推定し, 既存手法の主な一般化可能性の問題を克服できることが示唆された。
さらに、GRUやLSTMといった従来のモデルと比較して、非線形構造力学を表現する能力の強化が示されている。
関連論文リスト
- Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
リフレクションメトリデータと互換性のある全ての構造を見つけることは、標準アルゴリズムでは計算が禁止される。
この信頼性の欠如に対処するため,確率論的深層学習法を用いて,現実的な構造を数秒で識別する。
提案手法は,シミュレーションに基づく推論と新しい適応型事前推定を併用する。
論文 参考訳(メタデータ) (2024-07-26T10:29:16Z) - Synergistic Signal Denoising for Multimodal Time Series of Structure
Vibration [9.144905626316534]
本稿では,構造的健康モニタリング(SHM)で広く用いられているマルチモーダル振動信号に固有の複雑さに適した,新しいディープラーニングアルゴリズムを提案する。
畳み込みと再帰的なアーキテクチャの融合により、アルゴリズムは局所化と長期化の両方の構造挙動を順応的にキャプチャする。
以上の結果から,複数のSHMシナリオにおける予測精度,早期損傷検出,適応性に有意な改善が認められた。
論文 参考訳(メタデータ) (2023-08-17T00:41:50Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
スパースリカバリのためのモデルベースネットワークの一般化能力は、通常のReLUネットワークよりも優れていることを示す。
我々は,高一般化を保証したモデルベースネットワークの構築を可能にする実用的な設計規則を導出する。
論文 参考訳(メタデータ) (2023-04-19T16:39:44Z) - ASR: Attention-alike Structural Re-parameterization [53.019657810468026]
本稿では,アテンション機構の有効性を享受しながら,与えられたネットワークに対してSRPを実現するための,シンプルなアテンション型構造的再パラメータ化(ASR)を提案する。
本稿では,統計的観点から広範囲にわたる実験を行い,Stripe Observationという興味深い現象を発見し,チャネル注意値が訓練中に一定のベクトルに素早く接近することを明らかにする。
論文 参考訳(メタデータ) (2023-04-13T08:52:34Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
本研究では, 部分制御可能な線形力学系について, 基礎となる空間パターンを用いて検討する。
最適制御には無関係な状態変数を特徴付ける。
論文 参考訳(メタデータ) (2021-10-12T16:41:47Z) - Structure Amplification on Multi-layer Stochastic Block Models [16.53851254884497]
本稿では,複雑なネットワークに隠された構造を明らかにする一般的な構造増幅手法を提案する。
HiCODEは、隠れた機能が現れるようにランダム化することで、支配的な構造を徐々に弱める。
繰り返し還元法が隠れ構造物の発見を促進することができるという理論的証明を提供する。
論文 参考訳(メタデータ) (2021-07-31T02:11:47Z) - Disentangling Identifiable Features from Noisy Data with Structured
Nonlinear ICA [4.340954888479091]
我々は、SNICA(Structured Independent Component Analysis)と呼ばれる原則的絡み合いのための新しい一般化可能なフレームワークを導入する。
我々の貢献は、非常に広い階層構造モデルに対する深層生成モデルの識別可能性理論を拡張することである。
我々は,未知分布の雑音の存在下でも,このフレームワークの識別可能性が維持可能であるという主要な結果を確立する。
論文 参考訳(メタデータ) (2021-06-17T15:56:57Z) - Detecting structural perturbations from time series with deep learning [0.0]
本稿では,関数型時系列から構造摂動を推定するためのグラフニューラルネットワークを提案する。
データ駆動型アプローチは典型的な再構成手法より優れていることを示す。
この研究は、現実世界の複雑なシステムのレジリエンスを研究するための実践的な方法を明らかにする。
論文 参考訳(メタデータ) (2020-06-09T13:08:40Z) - Semi-Structured Distributional Regression -- Extending Structured
Additive Models by Arbitrary Deep Neural Networks and Data Modalities [0.0]
本稿では、構造化回帰モデルとディープニューラルネットワークを統合ネットワークアーキテクチャに結合する一般的なフレームワークを提案する。
数値実験において,本フレームワークの有効性を実証し,ベンチマークや実世界の応用において,そのメリットを実証する。
論文 参考訳(メタデータ) (2020-02-13T21:01:26Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
本稿では,対象空間が高次元な純粋教師付き環境における一般化の枠組みを解析する。
我々は、教師付き予測のための目標埋め込みオートエンコーダ(TEA)の一般的なフレームワークのモチベーションと形式化を行い、特徴とターゲットの予測の両方から予測可能なように最適化された中間潜在表現を学習する。
論文 参考訳(メタデータ) (2020-01-23T02:37:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。