論文の概要: EigenGS Representation: From Eigenspace to Gaussian Image Space
- arxiv url: http://arxiv.org/abs/2503.07446v2
- Date: Wed, 12 Mar 2025 06:21:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 12:14:34.412989
- Title: EigenGS Representation: From Eigenspace to Gaussian Image Space
- Title(参考訳): EigenGSの表現: 固有空間からガウス画像空間へ
- Authors: Lo-Wei Tai, Ching-En Li, Cheng-Lin Chen, Chih-Jung Tsai, Hwann-Tzong Chen, Tyng-Luh Liu,
- Abstract要約: EigenGSは、固有空間と画像空間のガウス表現を接続する効率的な変換パイプラインである。
EigenGSは直接2次元ガウスフィッティングよりも優れた再現性が得られることを示す。
結果は,様々な解像度と多様なカテゴリを持つ画像に対して,EigenGSの有効性と一般化能力を強調した。
- 参考スコア(独自算出の注目度): 20.454762899389358
- License:
- Abstract: Principal Component Analysis (PCA), a classical dimensionality reduction technique, and 2D Gaussian representation, an adaptation of 3D Gaussian Splatting for image representation, offer distinct approaches to modeling visual data. We present EigenGS, a novel method that bridges these paradigms through an efficient transformation pipeline connecting eigenspace and image-space Gaussian representations. Our approach enables instant initialization of Gaussian parameters for new images without requiring per-image optimization from scratch, dramatically accelerating convergence. EigenGS introduces a frequency-aware learning mechanism that encourages Gaussians to adapt to different scales, effectively modeling varied spatial frequencies and preventing artifacts in high-resolution reconstruction. Extensive experiments demonstrate that EigenGS not only achieves superior reconstruction quality compared to direct 2D Gaussian fitting but also reduces necessary parameter count and training time. The results highlight EigenGS's effectiveness and generalization ability across images with varying resolutions and diverse categories, making Gaussian-based image representation both high-quality and viable for real-time applications.
- Abstract(参考訳): 主成分分析 (PCA) は, 画像表現のための3次元ガウス分割の適応である2次元ガウス表現は, 視覚データをモデル化するための異なるアプローチを提供する。
固有空間と画像空間ガウス表現を接続する効率的な変換パイプラインを通じて,これらのパラダイムをブリッジする新しい手法であるEigenGSを提案する。
提案手法により,画像毎の最適化をスクラッチから必要とせず,ガウスパラメータを高速に初期化することが可能となり,収束が劇的に加速する。
EigenGSは、ガウスの異なるスケールへの適応を促す周波数認識学習機構を導入し、様々な空間周波数を効果的にモデル化し、高分解能再構成におけるアーティファクトを防止する。
広汎な実験により,EigenGSは直接2次元ガウスフィッティングよりも優れた再構成品質を達成できるだけでなく,必要なパラメータ数やトレーニング時間を短縮できることがわかった。
その結果,様々な解像度と多様なカテゴリを持つ画像に対して,EigenGSの有効性と一般化能力を強調した。
関連論文リスト
- Geometric Algebra Planes: Convex Implicit Neural Volumes [70.12234371845445]
GA-Planes はスパース低ランク係数と低分解能行列と等価であることを示す。
また,GA-Planeは既存の表現にも適用可能であることを示す。
論文 参考訳(メタデータ) (2024-11-20T18:21:58Z) - MVGS: Multi-view-regulated Gaussian Splatting for Novel View Synthesis [22.80370814838661]
ボリュームレンダリングにおける最近の研究、例えばNeRFや3D Gaussian Splatting (3DGS)は、レンダリング品質と効率を大幅に向上させた。
4つの重要な貢献を具現化した新しい3DGS最適化手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T23:48:31Z) - Image-GS: Content-Adaptive Image Representation via 2D Gaussians [55.15950594752051]
本稿では,コンテンツ適応型画像表現であるImage-GSを提案する。
異方性2Dガウスアンをベースとして、Image-GSは高いメモリ効率を示し、高速なランダムアクセスをサポートし、自然なレベルのディテールスタックを提供する。
画像-GSの一般的な効率性と忠実性は、最近のニューラルイメージ表現と業界標準テクスチャ圧縮機に対して検証される。
この研究は、機械認識、アセットストリーミング、コンテンツ生成など、適応的な品質とリソース制御を必要とする新しいアプリケーションを開発するための洞察を与えてくれることを願っている。
論文 参考訳(メタデータ) (2024-07-02T00:45:21Z) - MVSGaussian: Fast Generalizable Gaussian Splatting Reconstruction from Multi-View Stereo [54.00987996368157]
MVSGaussianは、Multi-View Stereo(MVS)から導かれる新しい一般化可能な3次元ガウス表現手法である。
MVSGaussianは、シーンごとにより良い合成品質でリアルタイムレンダリングを実現する。
論文 参考訳(メタデータ) (2024-05-20T17:59:30Z) - CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians [18.42203035154126]
2次元画像空間で制御できる構造付きガウス表現を導入する。
次に、ガウス群、特にその位置を制約し、最適化中に独立に動くのを防ぐ。
我々は,様々な場面における最先端のスパースビュー NeRF ベースのアプローチと比較して,顕著な改善を示した。
論文 参考訳(メタデータ) (2024-03-28T15:27:13Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES(Generalized Exponential Splatting)は、GEF(Generalized Exponential Function)を用いて3Dシーンをモデル化する斬新な表現である。
周波数変調損失の助けを借りて、GESは新規なビュー合成ベンチマークにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-02-15T17:32:50Z) - Mesh-based Gaussian Splatting for Real-time Large-scale Deformation [58.18290393082119]
ユーザがリアルタイムで大きな変形で暗黙の表現を直接変形または操作することは困難である。
我々は,インタラクティブな変形を可能にする新しいGSベースの手法を開発した。
提案手法は,高いフレームレートで良好なレンダリング結果を維持しつつ,高品質な再構成と効率的な変形を実現する。
論文 参考訳(メタデータ) (2024-02-07T12:36:54Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
我々は、文字の新たなビューをリアルタイムに合成するための新しいアプローチ、GPS-Gaussianを提案する。
提案手法は,スパースビューカメラ設定下での2K解像度のレンダリングを可能にする。
論文 参考訳(メタデータ) (2023-12-04T18:59:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。