論文の概要: BrainNet-MoE: Brain-Inspired Mixture-of-Experts Learning for Neurological Disease Identification
- arxiv url: http://arxiv.org/abs/2503.07640v1
- Date: Wed, 05 Mar 2025 22:19:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:44:46.739787
- Title: BrainNet-MoE: Brain-Inspired Mixture-of-Experts Learning for Neurological Disease Identification
- Title(参考訳): BrainNet-MoE:脳にインスパイアされた混合学習による神経疾患の同定
- Authors: Jing Zhang, Xiaowei Yu, Tong Chen, Chao Cao, Mingheng Chen, Yan Zhuang, Yanjun Lyu, Lu Zhang, Li Su, Tianming Liu, Dajiang Zhu,
- Abstract要約: Lewy body dementia (LBD)はアルツハイマー病に次いで2番目に多い神経変性性認知症である
私たちの研究は、脳のモデリングと診断のためにBrainNet-MoEと呼ばれるシステムレベルの人工ニューラルネットワークをモデル化する先駆的な取り組みを表している。
- 参考スコア(独自算出の注目度): 31.45078414913088
- License:
- Abstract: The Lewy body dementia (LBD) is the second most common neurodegenerative dementia after Alzheimer's disease (AD). Early differentiation between AD and LBD is crucial because they require different treatment approaches, but this is challenging due to significant clinical overlap, heterogeneity, complex pathogenesis, and the rarity of LBD. While recent advances in artificial intelligence (AI) demonstrate powerful learning capabilities and offer new hope for accurate diagnosis, existing methods primarily focus on designing "neural-level networks". Our work represents a pioneering effort in modeling system-level artificial neural network called BrainNet-MoE for brain modeling and diagnosing. Inspired by the brain's hierarchical organization of bottom-up sensory integration and top-down control, we design a set of disease-specific expert groups to process brain sub-network under different condition, A disease gate mechanism guides the specializa-tion of expert groups, while a transformer layer enables communication be-tween all sub-networks, generating a comprehensive whole-brain represen-tation for downstream disease classification. Experimental results show superior classification accuracy with interpretable insights into how brain sub-networks contribute to different neurodegenerative conditions.
- Abstract(参考訳): Lewy body dementia (LBD) はアルツハイマー病(AD)に続く2番目に一般的な神経変性性認知症である。
ADとLBDの早期分化は、異なる治療アプローチを必要とするため重要であるが、重要な臨床重複、不均一性、複雑な病原性、およびLBDの希少性のために、これは困難である。
人工知能(AI)の最近の進歩は、強力な学習能力を示し、正確な診断の新しい希望を提供する一方で、既存の手法は主に「神経レベルネットワーク」の設計に焦点を当てている。
私たちの研究は、脳のモデリングと診断のためにBrainNet-MoEと呼ばれるシステムレベルの人工ニューラルネットワークをモデル化する先駆的な取り組みを表している。
脳の階層的構造であるボトムアップ感覚統合とトップダウン制御にインスパイアされた我々は、脳のサブネットワークを異なる条件下で処理する一連の疾患特異的専門家グループを設計し、疾患ゲート機構は専門家グループの特殊化をガイドし、トランスフォーマー層はすべてのサブネットワークを通信し、下流の疾患分類のための包括的な全脳再認識を生成する。
実験の結果、脳のサブネットワークがどのように異なる神経変性状態に寄与するかを解釈可能な洞察を用いて、より優れた分類精度を示す。
関連論文リスト
- MindAligner: Explicit Brain Functional Alignment for Cross-Subject Visual Decoding from Limited fMRI Data [64.92867794764247]
MindAlignerは、限られたfMRIデータからのクロスオブジェクト脳デコーディングのためのフレームワークである。
脳伝達マトリックス(BTM)は、任意の新しい被験者の脳信号を既知の被験者の1人に投射する。
脳機能アライメントモジュールは、異なる視覚刺激下で軟質なクロスオブジェクト脳アライメントを実行するために提案されている。
論文 参考訳(メタデータ) (2025-02-07T16:01:59Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Brain-Aware Readout Layers in GNNs: Advancing Alzheimer's early Detection and Neuroimaging [1.074960192271861]
本研究では,グラフニューラルネットワーク(GNN)のための新しい脳認識読み出し層(BA読み出し層)を提案する。
機能的接続とノード埋め込みに基づく脳領域のクラスタリングによって、このレイヤは、複雑な脳ネットワーク特性をキャプチャするGNNの機能を改善する。
以上の結果から,BA読み出し層を有するGNNは,プレクリニカルアルツハイマー認知複合度(PACC)の予測において,従来のモデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-10-03T05:04:45Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - BrainNetDiff: Generative AI Empowers Brain Network Generation via
Multimodal Diffusion Model [7.894526238189559]
我々は、マルチヘッドトランスフォーマーエンコーダを組み合わせてfMRI時系列から関連する特徴を抽出するBrainNetDiffを紹介する。
健康・神経障害コホートにおける脳ネットワーク構築におけるこの枠組みの適用性を検証する。
論文 参考訳(メタデータ) (2023-11-09T08:27:12Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Transformer-Based Hierarchical Clustering for Brain Network Analysis [13.239896897835191]
本稿では,階層型クラスタ同定と脳ネットワーク分類のための新しい解釈可能なトランスフォーマーモデルを提案する。
階層的クラスタリング(hierarchical clustering)の助けを借りて、このモデルは精度の向上と実行時の複雑性の低減を実現し、脳領域の機能的構造に関する明確な洞察を提供する。
論文 参考訳(メタデータ) (2023-05-06T22:14:13Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
脳ディフューザー(Brain diffuser)は、拡散に基づくエンド・ツー・エンドの脳ネットワーク生成モデルである。
被験者間の構造的脳ネットワークの差異を分析することで、より構造的接続性や疾患関連情報を利用する。
アルツハイマー病の場合、提案モデルは、アルツハイマー病神経画像イニシアチブデータベース上の既存のツールキットの結果より優れている。
論文 参考訳(メタデータ) (2023-03-11T14:04:58Z) - Interpretable Graph Neural Networks for Connectome-Based Brain Disorder
Analysis [31.281194583900998]
本稿では、障害特異的な関心領域(ROI)と顕著なつながりを分析するための解釈可能なフレームワークを提案する。
提案するフレームワークは,脳ネットワーク指向の疾患予測のためのバックボーンモデルと,グローバルに共有された説明生成装置の2つのモジュールから構成される。
論文 参考訳(メタデータ) (2022-06-30T08:02:05Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。