論文の概要: A Case Study of Counting the Number of Unique Users in Linear and Non-Linear Trails -- A Multi-Agent System Approach
- arxiv url: http://arxiv.org/abs/2503.07651v1
- Date: Thu, 06 Mar 2025 18:43:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 19:17:47.849711
- Title: A Case Study of Counting the Number of Unique Users in Linear and Non-Linear Trails -- A Multi-Agent System Approach
- Title(参考訳): 直線・非線形トレイルにおける一様ユーザ数に関する事例研究 -マルチエージェントシステムによるアプローチ-
- Authors: Tanvir Rahman,
- Abstract要約: そこで本研究では,分散ネットワークにおける低コストカメラを利用した一意ユーザ追跡と分析を行うマルチエージェントシステムを提案する。
ケーススタディとして、デラウェア州ウィルミントンにあるJack A. Markell(JAM)トレイルと、デラウェア州ニューアークにあるホールトレイルにこのシステムをデプロイした。
結果は、ユニークなユーザを特定する上で72%の成功率を示し、自動公園活動監視のベンチマークを設定した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Parks play a crucial role in enhancing the quality of life by providing recreational spaces and environmental benefits. Understanding the patterns of park usage, including the number of visitors and their activities, is essential for effective security measures, infrastructure maintenance, and resource allocation. Traditional methods rely on single-entry sensors that count total visits but fail to distinguish unique users, limiting their effectiveness due to manpower and cost constraints.With advancements in affordable video surveillance and networked processing, more comprehensive park usage analysis is now feasible. This study proposes a multi-agent system leveraging low-cost cameras in a distributed network to track and analyze unique users. As a case study, we deployed this system at the Jack A. Markell (JAM) Trail in Wilmington, Delaware, and Hall Trail in Newark, Delaware. The system captures video data, autonomously processes it using existing algorithms, and extracts user attributes such as speed, direction, activity type, clothing color, and gender. These attributes are shared across cameras to construct movement trails and accurately count unique visitors. Our approach was validated through comparison with manual human counts and simulated scenarios under various conditions. The results demonstrate a 72% success rate in identifying unique users, setting a benchmark in automated park activity monitoring. Despite challenges such as camera placement and environmental factors, our findings suggest that this system offers a scalable, cost-effective solution for real-time park usage analysis and visitor behavior tracking.
- Abstract(参考訳): 公園はレクリエーション空間と環境利益を提供することで生活の質を高める重要な役割を担っている。
ビジター数とその活動を含む公園利用パターンを理解することは、効果的なセキュリティ対策、インフラ整備、資源配分に不可欠である。
従来の方法では、総訪問数をカウントするシングルエンターテイメントセンサーを頼りにしているが、ユニークなユーザを区別できず、人力とコストの制約による有効性を制限している。
そこで本研究では,分散ネットワークにおける低コストカメラを利用した一意ユーザ追跡と分析を行うマルチエージェントシステムを提案する。
ケーススタディとして、デラウェア州ウィルミントンにあるJack A. Markell(JAM)トレイルと、デラウェア州ニューアークにあるホールトレイルにこのシステムをデプロイした。
このシステムは、ビデオデータをキャプチャし、既存のアルゴリズムを使って自律的に処理し、速度、方向、活動タイプ、衣服の色、性別などのユーザー属性を抽出する。
これらの属性はカメラ間で共有され、移動路を構築し、ユニークビジターを正確にカウントする。
本手法は,人手計数との比較と,各種条件下でのシミュレーションシナリオによる検証を行った。
結果は、ユニークなユーザを特定する上で72%の成功率を示し、自動公園活動監視のベンチマークを設定した。
カメラ配置や環境要因などの課題にもかかわらず,本システムでは,リアルタイム公園利用分析やビジター行動追跡のためのスケーラブルで費用対効果の高いソリューションが提案されている。
関連論文リスト
- Analysis of Unstructured High-Density Crowded Scenes for Crowd Monitoring [55.2480439325792]
我々は,人群集の組織的動きを検出する自動システムの開発に興味がある。
コンピュータビジョンアルゴリズムは、混雑したシーンのビデオから情報を抽出することができる。
組織化されたコホート内の参加者数を見積もることができます。
論文 参考訳(メタデータ) (2024-08-06T22:09:50Z) - RTracker: Recoverable Tracking via PN Tree Structured Memory [71.05904715104411]
本稿では,木構造メモリを用いてトラッカーと検出器を動的に関連付け,自己回復を可能にするRTrackerを提案する。
具体的には,正負と負のターゲットサンプルを時系列に保存し,維持する正負のツリー構造メモリを提案する。
我々の中核となる考え方は、正と負の目標カテゴリーの支持サンプルを用いて、目標損失の信頼性評価のための相対的距離に基づく基準を確立することである。
論文 参考訳(メタデータ) (2024-03-28T08:54:40Z) - Wireless Crowd Detection for Smart Overtourism Mitigation [50.031356998422815]
この章では、モバイルデバイスのワイヤレスアクティビティに基づいたオーバツーリズムを監視するための、低コストなアプローチについて説明する。
群集センサは、無線技術のトレース要素を検出することで、周囲のモバイルデバイスの数をカウントする。
いくつかの技術で検出プログラムを実行し、指紋解析の結果は匿名データベースにのみローカルに保存される。
論文 参考訳(メタデータ) (2024-02-14T13:20:24Z) - YOLORe-IDNet: An Efficient Multi-Camera System for Person-Tracking [2.5761958263376745]
本稿では、相関フィルタとIOU(Intersection Over Union)の制約を併用して、ロバストなトラッキングを行う人物追跡システムを提案する。
提案システムは,複数のカメラでリアルタイムで容疑者を特定し,追跡する。
計算効率が高く、79%のF1スコア、既存の最先端アルゴリズムに匹敵する59%のIOUを実現している。
論文 参考訳(メタデータ) (2023-09-23T14:11:13Z) - Enhancing Multi-Camera People Tracking with Anchor-Guided Clustering and
Spatio-Temporal Consistency ID Re-Assignment [22.531044994763487]
本稿では,アンカークラスタリング誘導を用いたマルチカメラによる複数人物追跡手法を提案する。
提案手法は,各個人固有の重要な特徴を特定することによって,トラッキングの精度を向上させることを目的としている。
この手法は, 合成データと実世界のデータの両方を扱う上で, 堅牢性と有効性を示した。
論文 参考訳(メタデータ) (2023-04-19T07:38:15Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
理想化されたビデオストリームやキュレートされたビデオストリームの代わりに,リアルタイムで低解像度のCCTVを処理する,リアルタイムな都市規模のマルチカメラ車両追跡システムを提案する。
私たちの手法は、公共のリーダーボードで上位5人のパフォーマーにランク付けされています。
論文 参考訳(メタデータ) (2022-04-15T12:47:01Z) - Benchmarking high-fidelity pedestrian tracking systems for research,
real-time monitoring and crowd control [55.41644538483948]
実生活環境における高忠実な歩行者追跡は,群集動態研究において重要なツールである。
この技術が進歩するにつれて、社会においても益々有用になってきている。
歩行者追跡技術の研究と技術に成功させるためには、正確さの検証とベンチマークが不可欠である。
我々は、プライバシーに配慮した歩行者追跡技術のためのベンチマークスイートをコミュニティのオープンスタンダードに向けて提示し、議論する。
論文 参考訳(メタデータ) (2021-08-26T11:45:26Z) - Self-supervised Human Detection and Segmentation via Multi-view
Consensus [116.92405645348185]
本稿では,トレーニング中に幾何学的制約を多視点一貫性という形で組み込むマルチカメラフレームワークを提案する。
本手法は,標準ベンチマークから視覚的に外れた画像に対して,最先端の自己監視的人物検出とセグメンテーション技術に勝ることを示す。
論文 参考訳(メタデータ) (2020-12-09T15:47:21Z) - Artificial Intelligence Enabled Traffic Monitoring System [3.085453921856008]
本稿では,深層畳み込みニューラルネットワークを用いたリアルタイム交通映像の自動監視手法を提案する。
提案システムは、さまざまなトラフィック監視ニーズを自動化するために、最先端のディープラーニングアルゴリズムをデプロイする。
論文 参考訳(メタデータ) (2020-10-02T22:28:02Z) - Tracking Passengers and Baggage Items using Multi-camera Systems at
Security Checkpoints [0.7424262881242935]
本稿では,空港のチェックポイントセキュリティシナリオのためのカメラビデオの複数のオブジェクトをトラッキングする新しいトラッキング・バイ・検出フレームワークを提案する。
提案手法は,テスト時間データ拡張手法を用いてオブジェクト検出を改善する。
空港チェックポイント環境における複数のオーバーヘッドカメラから得られた映像の検出,追跡,関連性の評価は,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-07-15T18:09:31Z) - RetinaTrack: Online Single Stage Joint Detection and Tracking [22.351109024452462]
両タスクがミッションクリティカルな自律運転におけるトラッキング・バイ・検出パラダイムに注目した。
本稿では、一般的な単一ステージのRetinaNetアプローチを改良したRetinaTrackと呼ばれる、概念的にシンプルで効率的な検出と追跡のジョイントモデルを提案する。
論文 参考訳(メタデータ) (2020-03-30T23:46:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。