How many measurements are enough? Bayesian recovery in inverse problems with general distributions
- URL: http://arxiv.org/abs/2505.10630v1
- Date: Thu, 15 May 2025 18:11:54 GMT
- Title: How many measurements are enough? Bayesian recovery in inverse problems with general distributions
- Authors: Ben Adcock, Nick Huang,
- Abstract summary: We study the sample complexity of Bayesian recovery for solving inverse problems with general prior, forward operator and noise distributions.<n>As a key application, we specialize to generative priors, where $mathcalP$ is the pushforward of a latent distribution via a Deep Neural Network (DNN)
- Score: 0.7366405857677226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the sample complexity of Bayesian recovery for solving inverse problems with general prior, forward operator and noise distributions. We consider posterior sampling according to an approximate prior $\mathcal{P}$, and establish sufficient conditions for stable and accurate recovery with high probability. Our main result is a non-asymptotic bound that shows that the sample complexity depends on (i) the intrinsic complexity of $\mathcal{P}$, quantified by its so-called approximate covering number, and (ii) concentration bounds for the forward operator and noise distributions. As a key application, we specialize to generative priors, where $\mathcal{P}$ is the pushforward of a latent distribution via a Deep Neural Network (DNN). We show that the sample complexity scales log-linearly with the latent dimension $k$, thus establishing the efficacy of DNN-based priors. Generalizing existing results on deterministic (i.e., non-Bayesian) recovery for the important problem of random sampling with an orthogonal matrix $U$, we show how the sample complexity is determined by the coherence of $U$ with respect to the support of $\mathcal{P}$. Hence, we establish that coherence plays a fundamental role in Bayesian recovery as well. Overall, our framework unifies and extends prior work, providing rigorous guarantees for the sample complexity of solving Bayesian inverse problems with arbitrary distributions.
Related papers
- Uncertainty quantification and posterior sampling for network reconstruction [0.0]
We present an efficient MCMC algorithm for sampling from posterior distributions of reconstructed networks.<n>Our algorithm is specially suited for the inference of large and sparse networks.
arXiv Detail & Related papers (2025-03-10T18:00:14Z) - Generative diffusion for perceptron problems: statistical physics analysis and efficient algorithms [2.860608352191896]
We consider random instances of non- numerically weights perceptron problems in the high-dimensional limit.<n>We develop a formalism based on replica theory to predict Approximate sampling space using generative algorithms.
arXiv Detail & Related papers (2025-02-22T16:43:01Z) - Complexity Analysis of Normalizing Constant Estimation: from Jarzynski Equality to Annealed Importance Sampling and beyond [28.931489333515618]
Given an unnormalized probability density $piproptomathrme-V$, estimating its normalizing constant $Z=int_mathbbRdmathrme-V(x)mathrmdx$ or free energy $F=-log Z$ is a crucial problem in Bayesian statistics, statistical mechanics, and machine learning.<n>We propose a new normalizing constant estimation algorithm based on reverse diffusion samplers and establish a framework for analyzing its complexity.
arXiv Detail & Related papers (2025-02-07T00:05:28Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
Single-Index Models are high-dimensional regression problems with planted structure.
We show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require $Omega(dkstar/2)$ samples.
arXiv Detail & Related papers (2024-03-08T18:50:19Z) - Statistical-Computational Tradeoffs in Mixed Sparse Linear Regression [20.00109111254507]
We show that the problem suffers from a $frackSNR2$-to-$frack2SNR2$ statistical-to-computational gap.
We also analyze a simple thresholding algorithm which, outside of the narrow regime where the problem is hard, solves the associated mixed regression detection problem.
arXiv Detail & Related papers (2023-03-03T18:03:49Z) - Faster high-accuracy log-concave sampling via algorithmic warm starts [6.117084972237769]
In practice, high-accuracy samplers such as the classical Metropolis-adjusted Langevin algorithm (MALA) remain the de facto gold standard.
We improve the dimension dependence of this sampling problem to $tildeO(d1/2)$, whereas the previous best result for MALA was $tildeO(d)$.
Our main technical contribution settles this problem by establishing the first $tildeO(d1/2)$ R'enyi mixing rates for the discretized underdamped Langevin diffusion.
arXiv Detail & Related papers (2023-02-20T19:27:21Z) - On-Demand Sampling: Learning Optimally from Multiple Distributions [63.20009081099896]
Social and real-world considerations have given rise to multi-distribution learning paradigms.
We establish the optimal sample complexity of these learning paradigms and give algorithms that meet this sample complexity.
Our algorithm design and analysis are enabled by our extensions of online learning techniques for solving zero-sum games.
arXiv Detail & Related papers (2022-10-22T19:07:26Z) - Convergence for score-based generative modeling with polynomial
complexity [9.953088581242845]
We prove the first convergence guarantees for the core mechanic behind Score-based generative modeling.
Compared to previous works, we do not incur error that grows exponentially in time or that suffers from a curse of dimensionality.
We show that a predictor-corrector gives better convergence than using either portion alone.
arXiv Detail & Related papers (2022-06-13T14:57:35Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
We provide a framework for designing Generative Adversarial Networks (GANs) to solve high dimensional robust statistics problems.
Our work extend these to robust mean estimation, second moment estimation, and robust linear regression.
In terms of techniques, our proposed GAN losses can be viewed as a smoothed and generalized Kolmogorov-Smirnov distance.
arXiv Detail & Related papers (2022-02-02T20:11:33Z) - Towards Sample-Optimal Compressive Phase Retrieval with Sparse and
Generative Priors [59.33977545294148]
We show that $O(k log L)$ samples suffice to guarantee that the signal is close to any vector that minimizes an amplitude-based empirical loss function.
We adapt this result to sparse phase retrieval, and show that $O(s log n)$ samples are sufficient for a similar guarantee when the underlying signal is $s$-sparse and $n$-dimensional.
arXiv Detail & Related papers (2021-06-29T12:49:54Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
We propose an easy-to-use and general-purpose approach for fast posterior sampling.
We demonstrate how decoupled sample paths accurately represent Gaussian process posteriors at a fraction of the usual cost.
arXiv Detail & Related papers (2020-02-21T14:03:16Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
We study BQO under distributional uncertainty in which the underlying probability distribution is unknown except for a limited set of its i.i.d. samples.
A standard BQO approach maximizes the Monte Carlo estimate of the true expected objective given the fixed sample set.
We propose a novel posterior sampling based algorithm, namely distributionally robust BQO (DRBQO) for this purpose.
arXiv Detail & Related papers (2020-01-19T12:00:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.