On the Semantic Security of NTRU -- with a gentle introduction to cryptography
- URL: http://arxiv.org/abs/2503.07790v1
- Date: Mon, 10 Mar 2025 19:14:13 GMT
- Title: On the Semantic Security of NTRU -- with a gentle introduction to cryptography
- Authors: Liam Peet-Pare,
- Abstract summary: NTRU is a lattice based cryptosystem that appears to be safe against attacks by quantum computers.<n>NTRU's efficiency suggests it is a strong candidate as an alternative to RSA, ElGamal, and ECC for the post quantum world.
- Score: 1.0878040851638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper provides an explanation of NTRU, a post quantum encryption scheme, while also providing a gentle introduction to cryptography. NTRU is a very efficient lattice based cryptosystem that appears to be safe against attacks by quantum computers. NTRU's efficiency suggests that it is a strong candidate as an alternative to RSA, ElGamal, and ECC for the post quantum world. The paper begins with an introduction to cryptography and security proofs for cryptographic schemes before explaining the NTRU cryptosystem and culminating with a proof that the original presentation of NTRU is not IND-CPA secure. We will conclude by mentioning padding schemes to NTRU that are provably IND-CCA2 secure in the random oracle model. The paper is designed to be accessible to anyone with minimal background in abstract algebra and number theory - no previous knowledge of cryptography is assumed. Given the author's lack of familiarity with the subject, this paper aims to be an expository work rather than to provide new insights to the subject matter.
Related papers
- Quantum stream cipher and Quantum block cipher -The Era of 100 Gbit/sec real-time encryption- [0.0]
In the theory of cryptology, the Shannon impossibility theorem states that the upper bound of the security of a plaintext against a ciphertext-only attack is the entropy of the secret key.
Such challenges have been attempted with quantum stream cipher and quantum data locking as block cipher.
Both ciphers are designed by means of differentiating the receiving performance of Bob with key and Eve without key according to the principle of quantum communication theory.
arXiv Detail & Related papers (2025-04-24T04:28:17Z) - Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
We propose two novel applications of machine learning (ML) algorithms to perform cryptanalysis on any cryptosystem.<n>These algorithms can be readily applied in an audit setting to evaluate the robustness of a cryptosystem.<n>We show that our classification model correctly identifies the encryption schemes that are not IND-CPA secure, such as DES, RSA, and AES ECB, with high accuracy.
arXiv Detail & Related papers (2025-01-25T04:53:36Z) - The Evolution of Cryptography through Number Theory [55.2480439325792]
cryptography began around 100 years ago, its roots trace back to ancient civilizations like Mesopotamia and Egypt.
This paper explores the link between early information hiding techniques and modern cryptographic algorithms like RSA.
arXiv Detail & Related papers (2024-11-11T16:27:57Z) - Relating Quantum Tamper-Evident Encryption to Other Cryptographic Notions [0.0]
A quantum tamper-evident encryption scheme is a non-interactive symmetric-key encryption scheme mapping classical messages to quantum ciphertexts.
This quantum cryptographic primitive was first introduced by Gottesman in 2003.
We further our understanding of tamper-evident encryption by formally relating it to other cryptographic primitives in an information-theoretic setting.
arXiv Detail & Related papers (2024-11-05T02:20:29Z) - Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - Post Quantum Cryptography & its Comparison with Classical Cryptography [0.0]
Quantum cryptography operates on the principles of quantum mechanics, offering a new frontier in secure communication.
By contrasting quantum cryptography with its classical counterpart, it becomes evident how quantum mechanics revolutionizes the landscape of secure communication.
arXiv Detail & Related papers (2024-03-28T10:38:13Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Lightweight Public Key Encryption in Post-Quantum Computing Era [0.0]
Confidentiality in our digital world is based on the security of cryptographic algorithms.
In the course of technological progress with quantum computers, the protective function of common encryption algorithms is threatened.
Our concept describes the transformation of a classical asymmetric encryption method to a modern complexity class.
arXiv Detail & Related papers (2023-11-24T21:06:42Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Enhancing Networking Cipher Algorithms with Natural Language [0.0]
Natural language processing is considered as the weakest link in a networking encryption model.
This paper summarizes how languages can be integrated into symmetric encryption as a way to assist in the encryption of vulnerable streams.
arXiv Detail & Related papers (2022-06-22T09:05:52Z) - Digest of Quantum Stream Cipher based on Holevo-Yuen Theory [0.0]
This paper introduces an overview and a back ground of our paper that is entitled Quantum stream cipher based on Holevo-Yuen theory.
Around 2000, a new quantum stream cipher was proposed as a technique to challenge the possibility of overcoming drawbacks of OTP in practical use.
arXiv Detail & Related papers (2022-06-04T08:17:34Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Quantum copy-protection of compute-and-compare programs in the quantum random oracle model [48.94443749859216]
We introduce a quantum copy-protection scheme for a class of evasive functions known as " compute-and-compare programs"
We prove that our scheme achieves non-trivial security against fully malicious adversaries in the quantum random oracle model (QROM)
As a complementary result, we show that the same scheme fulfils a weaker notion of software protection, called "secure software leasing"
arXiv Detail & Related papers (2020-09-29T08:41:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.