論文の概要: A Study to Evaluate the Impact of LoRA Fine-tuning on the Performance of Non-functional Requirements Classification
- arxiv url: http://arxiv.org/abs/2503.07927v1
- Date: Tue, 11 Mar 2025 00:16:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:45:16.729410
- Title: A Study to Evaluate the Impact of LoRA Fine-tuning on the Performance of Non-functional Requirements Classification
- Title(参考訳): 非機能要件分類の性能に及ぼすLoRA微調整の影響評価に関する研究
- Authors: Xia Li, Allen Kim,
- Abstract要約: Low-Rank Adaptation (LoRA) のNFR分類への微調整アプローチ
実験の結果、LoRAは性能を損なうことなく実行コスト(最大68%の削減)を大幅に削減できることがわかった。
- 参考スコア(独自算出の注目度): 7.068996522191008
- License:
- Abstract: Classifying Non-Functional Requirements (NFRs) in software development life cycle is critical. Inspired by the theory of transfer learning, researchers apply powerful pre-trained models for NFR classification. However, full fine-tuning by updating all parameters of the pre-trained models is often impractical due to the huge number of parameters involved (e.g., 175 billion trainable parameters in GPT-3). In this paper, we apply Low-Rank Adaptation (LoRA) fine-tuning approach into NFR classification based on prompt-based learning to investigate its impact. The experiments show that LoRA can significantly reduce the execution cost (up to 68% reduction) without too much loss of effectiveness in classification (only 2%-3% decrease). The results show that LoRA can be practical in more complicated classification cases with larger dataset and pre-trained models.
- Abstract(参考訳): ソフトウェア開発ライフサイクルにおけるNF(Non-Functional Requirements)の分類は重要である。
移動学習理論に触発されて、研究者はNFR分類に強力な事前学習モデルを適用した。
しかし、事前訓練されたモデルの全てのパラメータを更新することで完全な微調整は、しばしば膨大な数のパラメータ(例えば、GPT-3の175億のトレーニング可能なパラメータ)によって実行不可能となる。
本稿では,ローランド適応法(LoRA)をNFR分類に適用し,その影響を調べる。
実験の結果、LoRAは性能を損なうことなく実行コスト(最大68%の削減)を大幅に削減できることがわかった(2%-3%の削減)。
以上の結果から,LoRAはより大きなデータセットと事前学習モデルを用いて,より複雑な分類を行うことが可能であることが示唆された。
関連論文リスト
- SD-LoRA: Scalable Decoupled Low-Rank Adaptation for Class Incremental Learning [73.93639228235622]
基礎モデルによる継続的な学習は、シーケンシャルなタスクに取り組むための事前トレーニング中に得られた豊富な知識を活用するための有望なパラダイムとして現れてきた。
既存のプロンプトベースおよびローランク適応ベース(LoRAベース)メソッドでは、プロンプト/ローラプールの拡張や、以前のタスクのサンプルの保持がしばしば必要である。
クラスインクリメンタル学習のためのスケーラブルデカップリングLoRA(SD-LoRA)を提案する。
論文 参考訳(メタデータ) (2025-01-22T20:00:41Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - DoRA: Enhancing Parameter-Efficient Fine-Tuning with Dynamic Rank Distribution [28.589498108609202]
Low-Rank Adaptation (LoRA) は、ウェイト行列の差分パラメータ予算要件を無視したバイパスフレームワークに依存している。
DoRAは、高ランクのLoRA層を構造化シングルランクコンポーネントに分解し、パラメータ予算の動的プルーニングを可能にする。
実験結果から,LORAやフルモデルファインチューニングと比較して,DoRAの競争性能が向上することが示された。
論文 参考訳(メタデータ) (2024-05-27T17:02:27Z) - MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning [71.50432879573614]
低ランク適応 (LoRA) は、適応過程が本質的に低次元であるという考えに基づいている。
我々は、より高階を維持しながらトレーニング可能なパラメータを少なくするミニアンサンブルな低ランクアダプタMELoRAを提案する。
実験結果から, 自然言語理解タスクの8倍のトレーニングパラメータ, 続くタスクの36倍のトレーニングパラメータが得られた。
論文 参考訳(メタデータ) (2024-02-27T07:14:12Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
我々はPRILoRAを導入し、各層ごとに異なるランクを線形に割り当て、トレーニングプロセスを通してプルーニングを行う。
8つのGLUEベンチマークで広範な実験を行い,PRILoRAの有効性を検証する。
論文 参考訳(メタデータ) (2024-01-20T20:25:17Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
本稿では,適応過程における固有ランクの動的調整を可能にする疎低ランク適応(SoRA)を提案する。
提案手法は,LoRAを高いランクで初期化すると同時に,一時的に増大するパラメータを効率的に利用することにより,LoRAの表現力を向上する。
実験の結果,SoRAは70%の保持パラメータと70%のトレーニング時間でも,他のベースラインよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-20T11:56:25Z) - LoRA: Low-Rank Adaptation of Large Language Models [71.75808607987281]
Low-Rank Adaptation (LoRA)はトレーニング済みモデルの重みを凍結し、トレーニング可能な階数分解をTransformerアーキテクチャの各層に注入する。
GPT-3では、LoRAはトレーニング可能なパラメータの数を1万倍に減らし、計算ハードウェアの要求をフル微調整の3倍に削減できる。
論文 参考訳(メタデータ) (2021-06-17T17:37:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。