論文の概要: Hierarchical Contact-Rich Trajectory Optimization for Multi-Modal Manipulation using Tight Convex Relaxations
- arxiv url: http://arxiv.org/abs/2503.07963v2
- Date: Wed, 12 Mar 2025 01:43:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:38:31.221185
- Title: Hierarchical Contact-Rich Trajectory Optimization for Multi-Modal Manipulation using Tight Convex Relaxations
- Title(参考訳): タイト凸緩和を用いたマルチモーダルマニピュレーションのための階層的接触・リッチ軌道最適化
- Authors: Yuki Shirai, Arvind Raghunathan, Devesh K. Jha,
- Abstract要約: 本稿では,ロボット,オブジェクト,コンタクトの軌跡を効率的に設計し,コンタクトリッチな操作を行うための新しい枠組みを提案する。
本研究では,Mixed-Integer Linear Program (MILP) がロボットとオブジェクト間の最適な接触を選択する階層的最適化フレームワークを提案する。
我々は,MILPがより厳密な解を提供できるようなバイナリ符号化技術を用いて,双線形制約の凸緩和を提案する。
- 参考スコア(独自算出の注目度): 12.578064173652148
- License:
- Abstract: Designing trajectories for manipulation through contact is challenging as it requires reasoning of object \& robot trajectories as well as complex contact sequences simultaneously. In this paper, we present a novel framework for simultaneously designing trajectories of robots, objects, and contacts efficiently for contact-rich manipulation. We propose a hierarchical optimization framework where Mixed-Integer Linear Program (MILP) selects optimal contacts between robot \& object using approximate dynamical constraints, and then a NonLinear Program (NLP) optimizes trajectory of the robot(s) and object considering full nonlinear constraints. We present a convex relaxation of bilinear constraints using binary encoding technique such that MILP can provide tighter solutions with better computational complexity. The proposed framework is evaluated on various manipulation tasks where it can reason about complex multi-contact interactions while providing computational advantages. We also demonstrate our framework in hardware experiments using a bimanual robot system. The video summarizing this paper and hardware experiments is found https://youtu.be/s2S1Eg5RsRE?si=chPkftz_a3NAHxLq
- Abstract(参考訳): 接触による操作のためのトラジェクトリの設計は、オブジェクト \&ロボットトラジェクトリの推論と複雑な接触シーケンスを同時に行う必要があるため、難しい。
本稿では,ロボット,オブジェクト,コンタクトの軌跡を同時に設計し,コンタクトリッチな操作を効率的に行うための新しい枠組みを提案する。
そこで我々は,Mixed-Integer Linear Program (MILP) が近似的動的制約を用いてロボットとオブジェクト間の最適接触を選択する階層的最適化フレームワークを提案し,次にNonLinear Program (NLP) がロボットの軌道を最適化し,完全な非線形制約を考慮したオブジェクトを最適化する。
両線形制約の凸緩和をバイナリ符号化技術を用いて行い、MILPはより複雑な計算でより厳密な解が得られるようにした。
提案するフレームワークは,複雑なマルチコンタクト相互作用を推論し,計算上の優位性を提供しながら,様々な操作タスクで評価される。
また,バイマニュアルロボットシステムを用いたハードウェア実験において,本フレームワークを実証する。
この論文とハードウェアの実験を要約したビデオはhttps://youtu.be/s2S1Eg5RsRE?
si=chPkftz_a3NAHxLq
関連論文リスト
- Bridging Visualization and Optimization: Multimodal Large Language Models on Graph-Structured Combinatorial Optimization [56.17811386955609]
グラフ構造上の課題は、その非線形で複雑な性質のために本質的に困難である。
本研究では,高次構造的特徴を正確に保存するために,グラフを画像に変換する手法を提案する。
マルチモーダルな大規模言語モデルと単純な検索手法を組み合わせた革新的なパラダイムを生かし、新しい効果的なフレームワークを開発することを目指す。
論文 参考訳(メタデータ) (2025-01-21T08:28:10Z) - A Hybrid Evolutionary Approach for Multi Robot Coordinated Planning at Intersections [0.0]
交差点での協調型マルチロボット運動計画は、道路、工場、倉庫における安全な移動の鍵となる。
本稿では,パラメトリック格子構造と離散的RRTを用いた新しい進化的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-12-02T03:40:04Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
移動, 把握, 接触問題を同時に解くための効率的な運動計画フレームワークを提案する。
ハードウェア実験において提案手法を実証し, より短い計画時間で, 傾斜角45degで自由クライミングを含む様々な動作を実現できることを示す。
論文 参考訳(メタデータ) (2022-07-04T13:52:10Z) - Intelligent Trajectory Design for RIS-NOMA aided Multi-robot
Communications [59.34642007625687]
目的は,ロボットの軌道とNOMA復号命令を協調的に最適化することで,マルチロボットシステムにおける全軌道の総和率を最大化することである。
ARIMAモデルとDouble Deep Q-network (D$3$QN)アルゴリズムを組み合わせたML方式を提案する。
論文 参考訳(メタデータ) (2022-05-03T17:14:47Z) - Graph-based Reinforcement Learning meets Mixed Integer Programs: An
application to 3D robot assembly discovery [34.25379651790627]
我々は、テトリスのような構造ブロックとロボットマニピュレータを用いて、スクラッチから完全に定義済みの任意のターゲット構造を構築するという課題に対処する。
我々の新しい階層的アプローチは、タスク全体を相互に利益をもたらす3つの実行可能なレベルに効率的に分解することを目的としています。
論文 参考訳(メタデータ) (2022-03-08T14:44:51Z) - An End-to-End Differentiable Framework for Contact-Aware Robot Design [37.715596272425316]
我々は、接触認識ロボット設計のためのエンドツーエンドの差別化可能なフレームワークを構築した。
変形に基づく新しいパラメータ化により、任意の複雑な幾何学を持つ剛体ロボットを設計することができる。
微分可能な剛体シミュレータは、接触豊富なシナリオを処理し、運動パラメータと動的パラメータの完全なスペクトルに対する解析的勾配を計算することができる。
論文 参考訳(メタデータ) (2021-07-15T17:53:44Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Nothing But Geometric Constraints: A Model-Free Method for Articulated
Object Pose Estimation [89.82169646672872]
本稿では,ロボットアームの関節構成を,モデルに先入観を持たずにRGBまたはRGB-D画像のシーケンスから推定する,教師なし視覚ベースシステムを提案する。
我々は,古典幾何学的定式化と深層学習を組み合わせることで,この課題を解決するために,極性多剛体制約を拡張した。
論文 参考訳(メタデータ) (2020-11-30T20:46:48Z) - ADD: Analytically Differentiable Dynamics for Multi-Body Systems with
Frictional Contact [26.408218913234872]
剛体および変形可能な物体に対する摩擦接触を処理できる微分可能な動的解法を提案する。
本手法は, 摩擦接触の非平滑な性質に起因した主な困難を回避できる。
論文 参考訳(メタデータ) (2020-07-02T09:51:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。