論文の概要: Two-Dimensional Deep ReLU CNN Approximation for Korobov Functions: A Constructive Approach
- arxiv url: http://arxiv.org/abs/2503.07976v1
- Date: Tue, 11 Mar 2025 02:15:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:45:51.607187
- Title: Two-Dimensional Deep ReLU CNN Approximation for Korobov Functions: A Constructive Approach
- Title(参考訳): Korobov関数に対する2次元Deep ReLU CNN近似:構成的アプローチ
- Authors: Qin Fang, Lei Shi, Min Xu, Ding-Xuan Zhou,
- Abstract要約: 本稿では,2次元(2次元)深部畳み込みニューラルネットワーク(CNN)の近似能力について検討する。
我々は,ゼロパディングとReLUアクティベーションを備えた多チャンネル畳み込み層と,完全に接続された層とからなる2次元CNNに焦点を当てた。
本研究では,コロボフ関数を近似するために2次元CNNを構築するための完全な構成的手法を提案し,構築されたネットワークの複雑さを厳密に解析する。
- 参考スコア(独自算出の注目度): 13.218398833013293
- License:
- Abstract: This paper investigates approximation capabilities of two-dimensional (2D) deep convolutional neural networks (CNNs), with Korobov functions serving as a benchmark. We focus on 2D CNNs, comprising multi-channel convolutional layers with zero-padding and ReLU activations, followed by a fully connected layer. We propose a fully constructive approach for building 2D CNNs to approximate Korobov functions and provide rigorous analysis of the complexity of the constructed networks. Our results demonstrate that 2D CNNs achieve near-optimal approximation rates under the continuous weight selection model, significantly alleviating the curse of dimensionality. This work provides a solid theoretical foundation for 2D CNNs and illustrates their potential for broader applications in function approximation.
- Abstract(参考訳): 本稿では,2次元(2次元)深部畳み込みニューラルネットワーク(CNN)の近似能力について検討する。
我々は,ゼロパディングとReLUアクティベーションを備えた多チャンネル畳み込み層と,完全に接続された層とからなる2次元CNNに焦点を当てた。
本研究では,コロボフ関数を近似するために2次元CNNを構築するための完全な構成的手法を提案し,構築されたネットワークの複雑さを厳密に解析する。
以上の結果から, 2次元CNNは連続重み選択モデルの下でほぼ最適近似を達成でき, 次元の呪いを著しく軽減できることがわかった。
この研究は2次元CNNの確かな理論基盤を提供し、関数近似におけるより広範な応用の可能性を示している。
関連論文リスト
- CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
蒸留によりCNNとGNNを統一する新しいCNN2GNNフレームワークを提案する。
Mini-ImageNetにおける蒸留ブースターの2層GNNの性能は、ResNet152のような数十層を含むCNNよりもはるかに高い。
論文 参考訳(メタデータ) (2024-04-23T08:19:08Z) - The R2D2 deep neural network series paradigm for fast precision imaging in radio astronomy [1.7249361224827533]
最近の画像再構成技術は、CLEANの能力をはるかに超えて、画像の精度が著しく向上している。
高ダイナミックレンジイメージングのためのResidual-to-Residual DNNシリーズと呼ばれる新しいディープラーニング手法を導入する。
高精度を実現するためのR2D2の能力は、超大型アレイ(VLA)を用いた様々な画像観測環境においてシミュレーションで実証されている。
論文 参考訳(メタデータ) (2024-03-08T16:57:54Z) - Dynamic 3D Point Cloud Sequences as 2D Videos [81.46246338686478]
3Dポイントクラウドシーケンスは、現実世界の環境における最も一般的で実用的な表現の1つとして機能する。
textitStructured Point Cloud Videos (SPCV) と呼ばれる新しい汎用表現を提案する。
SPCVは点雲列を空間的滑らかさと時間的一貫性を持つ2Dビデオとして再編成し、画素値は点の3D座標に対応する。
論文 参考訳(メタデータ) (2024-03-02T08:18:57Z) - Approximation analysis of CNNs from a feature extraction view [8.94250977764275]
我々は、深層多チャンネル畳み込みニューラルネットワーク(CNN)による線形特徴抽出のためのいくつかの解析を確立する。
マルチチャネルCNNを用いて,線形特徴抽出を効率的に行う方法を示す。
チャネルで実装された深層ネットワークによる関数近似の速度も検討した。
論文 参考訳(メタデータ) (2022-10-14T04:09:01Z) - Continuous approximation by convolutional neural networks with a
sigmoidal function [0.0]
我々は、非重複CNNと呼ばれる畳み込みニューラルネットワーク(CNN)のクラスを提示する。
このようなシグミカルアクティベーション関数を持つネットワークは任意の精度でコンパクトな入力集合上で定義された任意の連続関数を近似できることを示す。
論文 参考訳(メタデータ) (2022-09-27T12:31:36Z) - What Can Be Learnt With Wide Convolutional Neural Networks? [69.55323565255631]
カーネルシステムにおける無限大の深層CNNについて検討する。
我々は,深部CNNが対象関数の空間スケールに適応していることを証明する。
我々は、別の深部CNNの出力に基づいて訓練された深部CNNの一般化誤差を計算して結論付ける。
論文 参考訳(メタデータ) (2022-08-01T17:19:32Z) - Towards a General Purpose CNN for Long Range Dependencies in
$\mathrm{N}$D [49.57261544331683]
構造変化のない任意の解像度,次元,長さのタスクに対して,連続的な畳み込みカーネルを備えた単一CNNアーキテクチャを提案する。
1$mathrmD$)とビジュアルデータ(2$mathrmD$)の幅広いタスクに同じCCNNを適用することで、我々のアプローチの汎用性を示す。
私たちのCCNNは競争力があり、検討されたすべてのタスクで現在の最先端を上回ります。
論文 参考訳(メタデータ) (2022-06-07T15:48:02Z) - Application of 2-D Convolutional Neural Networks for Damage Detection in
Steel Frame Structures [0.0]
本稿では,2次元畳み込みニューラルネットワーク(2次元CNN)を特徴抽出と分類段階の両方に応用する。
本手法では、深度ではなく、光ったCNNのネットワークを使用し、生の加速度信号を入力とする。
論文 参考訳(メタデータ) (2021-10-29T16:29:31Z) - MSDPN: Monocular Depth Prediction with Partial Laser Observation using
Multi-stage Neural Networks [1.1602089225841632]
深層学習に基づくマルチステージネットワークアーキテクチャであるMulti-Stage Depth Prediction Network (MSDPN)を提案する。
MSDPNは2次元LiDARと単眼カメラを用いて深度マップを予測する。
実験により,本ネットワークは最先端手法に対して有望な性能を示す。
論文 参考訳(メタデータ) (2020-08-04T08:27:40Z) - Implicit Convex Regularizers of CNN Architectures: Convex Optimization
of Two- and Three-Layer Networks in Polynomial Time [70.15611146583068]
本稿では,ReLUアクティベーションを用いた畳み込みニューラルネットワーク(CNN)のトレーニングについて検討する。
我々は,データサンプル数,ニューロン数,データ次元に関して,厳密な凸最適化を導入する。
論文 参考訳(メタデータ) (2020-06-26T04:47:20Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
本稿では,ResNet型CNNが重要な関数クラスにおいて最小誤差率を達成可能であることを示す。
Barron と H'older のクラスに対する前述のタイプの CNN の近似と推定誤差率を導出する。
論文 参考訳(メタデータ) (2019-03-24T19:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。