論文の概要: Large Scale Multi-Task Bayesian Optimization with Large Language Models
- arxiv url: http://arxiv.org/abs/2503.08131v1
- Date: Tue, 11 Mar 2025 07:46:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:42:01.690235
- Title: Large Scale Multi-Task Bayesian Optimization with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた大規模マルチタスクベイズ最適化
- Authors: Yimeng Zeng, Natalie Maus, Haydn Thomas Jones, Jeffrey Tao, Fangping Wan, Marcelo Der Torossian Torres, Cesar de la Fuente-Nunez, Ryan Marcus, Osbert Bastani, Jacob R. Gardner,
- Abstract要約: 本稿では,大規模言語モデル(LLM)を活用して,従来の最適化軌道から学習し,改良する手法を提案する。
本手法は,データベースクエリ最適化と抗菌ペプチドの設計の2つの異なる領域で評価する。
- 参考スコア(独自算出の注目度): 29.12351845364205
- License:
- Abstract: In multi-task Bayesian optimization, the goal is to leverage experience from optimizing existing tasks to improve the efficiency of optimizing new ones. While approaches using multi-task Gaussian processes or deep kernel transfer exist, the performance improvement is marginal when scaling to more than a moderate number of tasks. We introduce a novel approach leveraging large language models (LLMs) to learn from, and improve upon, previous optimization trajectories, scaling to approximately 2000 distinct tasks. Specifically, we propose an iterative framework in which an LLM is fine-tuned using the high quality solutions produced by BayesOpt to generate improved initializations that accelerate convergence for future optimization tasks based on previous search trajectories. We evaluate our method on two distinct domains: database query optimization and antimicrobial peptide design. Results demonstrate that our approach creates a positive feedback loop, where the LLM's generated initializations gradually improve, leading to better optimization performance. As this feedback loop continues, we find that the LLM is eventually able to generate solutions to new tasks in just a few shots that are better than the solutions produced by "from scratch" by Bayesian optimization while simultaneously requiring significantly fewer oracle calls.
- Abstract(参考訳): マルチタスクベイズ最適化では、既存のタスクの最適化から経験を活用して、新しいタスクの最適化の効率を改善することが目的である。
マルチタスクガウシアンプロセスやディープカーネル転送を用いたアプローチは存在するが、適度なタスク数にスケールアップする場合には性能改善が限界である。
本稿では,大規模言語モデル(LLM)を活用して,従来の最適化軌道から学習し,改良し,約2000のタスクに拡張する手法を提案する。
具体的には,BayesOpt が生成した高品質なソリューションを用いて LLM を微調整し,過去の探索軌道に基づく将来の最適化タスクの収束を加速する改良された初期化を生成する反復的フレームワークを提案する。
本手法は,データベースクエリ最適化と抗菌ペプチドの設計の2つの異なる領域で評価する。
その結果, LLMの初期化は徐々に改善され, 最適化性能が向上した。
このフィードバックループが続くにつれて、LLMは最終的に、ベイズ最適化による"スクラッチ"によるソリューションよりも優れた数ショットで新しいタスクに対するソリューションを生成でき、同時により少ないオラクル呼び出しを要求できることがわかった。
関連論文リスト
- Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - Search-Based LLMs for Code Optimization [16.843870288512363]
開発者によって書かれたコードは、通常効率上の問題に悩まされ、様々なパフォーマンス上のバグを含んでいる。
最近の研究は、タスクをシーケンス生成問題とみなし、大規模言語モデル(LLM)のようなディープラーニング(DL)技術を活用している。
改良された最適化手法の反復的洗練と発見を可能にする,SBLLM という検索ベース LLM フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-22T06:59:46Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
クエリ依存型プロンプト最適化(QPO)を導入し、入力クエリに合わせて最適なプロンプトを生成するために、小さな事前訓練された言語モデルを反復的に微調整する。
我々は、オープンソースのタスクに様々なプロンプトをベンチマークする副産物として、すでに大量に存在するオフラインのプロンプトデータから洞察を得る。
様々なLLMスケールと多様なNLPおよび数学タスクの実験は、ゼロショットと少数ショットの両方のシナリオにおいて、我々の手法の有効性とコスト効率を実証している。
論文 参考訳(メタデータ) (2024-08-20T03:06:48Z) - A Problem-Oriented Perspective and Anchor Verification for Code Optimization [43.28045750932116]
大規模言語モデル(LLM)は、様々なプログラミングタスクを解く際、顕著な能力を示している。
本稿では,LLMが最小実行時間に最適化する能力について検討する。
論文 参考訳(メタデータ) (2024-06-17T16:10:10Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
オフライン優先最適化は、LLM(Large Language Model)出力の品質を向上・制御するための重要な手法である。
我々は、人間の介入なしに、新しい最先端の選好最適化アルゴリズムを自動で発見する客観的発見を行う。
実験は、ロジスティックと指数的損失を適応的にブレンドする新しいアルゴリズムであるDiscoPOPの最先端性能を示す。
論文 参考訳(メタデータ) (2024-06-12T16:58:41Z) - Pretrained Optimization Model for Zero-Shot Black Box Optimization [16.391389860521134]
多様なタスクの最適化から得られた知識を活用する事前学習最適化モデル(POM)を提案する。
POMは、直接アプリケーションや数発のサンプルによる微調整を通じて、ゼロショット最適化の効率的なソリューションを提供する。
少数のサンプルと予算を持つ微調整POMは、大幅な性能改善をもたらす。
論文 参考訳(メタデータ) (2024-05-06T09:11:49Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
本稿では,大規模言語モデル(LLM)に基づくプロンプトの設計について検討する。
モデルパラメータ学習における2つの重要な要素を同定する。
グラディエントにインスパイアされた Prompt ベースの GPO を開発した。
論文 参考訳(メタデータ) (2024-02-27T15:05:32Z) - Large Language Models as Optimizers [106.52386531624532]
本稿では,大規模言語モデル (LLM) をプロンプトとして活用するためのシンプルで効果的な手法である Prompting (OPRO) を提案する。
各最適化ステップにおいて、LLMは、前述した値を含むプロンプトから新しい解を生成する。
OPROにより最適化された最良のプロンプトは、GSM8Kで最大8%、Big-Bench Hardタスクで最大50%向上することを示した。
論文 参考訳(メタデータ) (2023-09-07T00:07:15Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
我々は,従来の最適化タスクから解を転送するアルゴリズムの能力を研究することのできる,システムの柔軟性のためのフレームワークを提案する。
NSGA-IIの柔軟性を2つの変種で検討し,1)2つのタスクの解を同時に最適化し,より適応性が高いと期待されるソース間の解を得る,2)活性化あるいは非活性化の異なる可能性に対応する能動的非アクティブなジェノタイプについて検討した。
その結果,標準NSGA-IIによる適応は目標目標への最適化に必要な評価回数を大幅に削減し,提案した変種は適応コストをさらに向上することがわかった。
論文 参考訳(メタデータ) (2023-05-31T12:07:50Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
反復解法をトレーニング可能なパラメトリック集合関数に置き換えることを提案する。
このようなパラメトリックな(集合)関数を学習することで、様々な古典的最適化問題を解くことができることを示す。
論文 参考訳(メタデータ) (2022-02-08T19:13:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。