論文の概要: Attention to Trajectory: Trajectory-Aware Open-Vocabulary Tracking
- arxiv url: http://arxiv.org/abs/2503.08145v1
- Date: Tue, 11 Mar 2025 08:03:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:45:39.179451
- Title: Attention to Trajectory: Trajectory-Aware Open-Vocabulary Tracking
- Title(参考訳): 軌跡への注意:軌跡を意識した開語彙追跡
- Authors: Yunhao Li, Yifan Jiao, Dan Meng, Heng Fan, Libo Zhang,
- Abstract要約: OV-MOTは、事前定義されたカテゴリのセットに制限されることなく、オブジェクトを追跡するアプローチを可能にすることを目的としている。
我々は,OV-MOTにおけるオブジェクトの関連性や分類を改善するために,トラジェクトリ情報を活用するオープン語彙トラッカーであるtextbfTRACT を提案する。
- 参考スコア(独自算出の注目度): 23.65057966356924
- License:
- Abstract: Open-Vocabulary Multi-Object Tracking (OV-MOT) aims to enable approaches to track objects without being limited to a predefined set of categories. Current OV-MOT methods typically rely primarily on instance-level detection and association, often overlooking trajectory information that is unique and essential for object tracking tasks. Utilizing trajectory information can enhance association stability and classification accuracy, especially in cases of occlusion and category ambiguity, thereby improving adaptability to novel classes. Thus motivated, in this paper we propose \textbf{TRACT}, an open-vocabulary tracker that leverages trajectory information to improve both object association and classification in OV-MOT. Specifically, we introduce a \textit{Trajectory Consistency Reinforcement} (\textbf{TCR}) strategy, that benefits tracking performance by improving target identity and category consistency. In addition, we present \textbf{TraCLIP}, a plug-and-play trajectory classification module. It integrates \textit{Trajectory Feature Aggregation} (\textbf{TFA}) and \textit{Trajectory Semantic Enrichment} (\textbf{TSE}) strategies to fully leverage trajectory information from visual and language perspectives for enhancing the classification results. Extensive experiments on OV-TAO show that our TRACT significantly improves tracking performance, highlighting trajectory information as a valuable asset for OV-MOT. Code will be released.
- Abstract(参考訳): Open-Vocabulary Multi-Object Tracking (OV-MOT)は、事前に定義されたカテゴリのセットに制限されることなく、オブジェクトを追跡するアプローチを可能にすることを目的としている。
現在のOV-MOT法は、主にインスタンスレベルの検出とアソシエーションに依存しており、しばしばオブジェクト追跡タスクに欠かせない軌跡情報を見落としている。
軌道情報を利用すると、特に排他的・カテゴリー的曖昧性の場合には、関連性の安定性と分類精度が向上し、新しいクラスへの適応性が向上する。
そこで本研究では,OV-MOTにおけるオブジェクトの関連性と分類性を改善するために,軌跡情報を活用するオープン語彙トラッカーである‘textbf{TRACT}’を提案する。
具体的には、ターゲットのアイデンティティとカテゴリの整合性を改善することで、パフォーマンスのトラッキングに役立てる、 \textit{Trajectory Consistency Reinforcement} (\textbf{TCR}) 戦略を導入する。
さらに,プラグアンドプレイトラジェクトリ分類モジュールである \textbf{TraCLIP} について述べる。
これは \textit{Trajectory Feature Aggregation} (\textbf{TFA}) と \textit{Trajectory Semantic Enrichment} (\textbf{TSE}) の戦略を統合し、視覚および言語の観点からのトラジェクトリ情報を完全に活用し、分類結果を向上する。
OV-TAOの広範囲な実験により, TRACTはトラジェクトリ情報をOV-MOTの貴重な資産として強調し, 追跡性能を著しく向上することが示された。
コードはリリースされる。
関連論文リスト
- Without Paired Labeled Data: An End-to-End Self-Supervised Paradigm for UAV-View Geo-Localization [2.733505168507872]
UAV-View Geo-Localizationは、GPSタグ付き衛星画像を取得することで、UAVの正確な位置を確認することを目的としている。
既存の手法は、トレーニングのためにアノテーション付きペアデータを必要とする教師付き学習パラダイムに依存している。
本稿では,UAVビューのジオローカライゼーションのための軽量なエンドツーエンドの自己組織化フレームワークであるDynamic Memory-Driven and Neighborhood Information Learning Networkを提案する。
論文 参考訳(メタデータ) (2025-02-17T02:53:08Z) - VOVTrack: Exploring the Potentiality in Videos for Open-Vocabulary Object Tracking [61.56592503861093]
オープンボキャブラリオブジェクト検出(OVD)とマルチオブジェクトトラッキング(MOT)の複雑さを両立させる。
OVMOT の既存のアプローチは、OVD と MOT の方法論を別個のモジュールとして統合することが多く、主に画像中心のレンズによる問題に焦点を当てている。
VOVTrackは、MOTとビデオ中心トレーニングに関連するオブジェクト状態を統合する新しい手法であり、ビデオオブジェクト追跡の観点からこの問題に対処する。
論文 参考訳(メタデータ) (2024-10-11T05:01:49Z) - SLAck: Semantic, Location, and Appearance Aware Open-Vocabulary Tracking [89.43370214059955]
Open-vocabulary Multiple Object Tracking (MOT)は、トレーニングセットにはない新しいカテゴリにトラッカーを一般化することを目的としている。
我々は,連合の初期段階において,意味論,位置,出現の先行を共同で検討する統一的な枠組みを提案する。
提案手法は,異なるキューを融合するための複雑な後処理を排除し,大規模オープン語彙追跡のための関連性能を大幅に向上させる。
論文 参考訳(メタデータ) (2024-09-17T14:36:58Z) - Beyond Visual Cues: Synchronously Exploring Target-Centric Semantics for
Vision-Language Tracking [3.416427651955299]
単一のオブジェクトトラッキングは、最初の状態から、ビデオシーケンス内の特定のターゲットを見つけることを目的としている。ビジョンランゲージ(VL)トラッキングは、有望なアプローチとして登場した。
本稿では,VL追跡のためのターゲット中心のセマンティクスを徐々に探求する新しいトラッカーを提案する。
論文 参考訳(メタデータ) (2023-11-28T02:28:12Z) - Open-Vocabulary Camouflaged Object Segmentation [66.94945066779988]
OVCOS(Open-vocabulary camouflaged Object segmentation)を導入した。
我々は11,483個の手選択画像とそれに対応するオブジェクトクラスを含む大規模複合シーンデータセット(textbfOVCamo)を構築した。
クラスセマンティック知識の指導とエッジ情報と深度情報からの視覚構造的手がかりの補足を統合することにより、提案手法は効率よくカモフラージュされたオブジェクトを捕捉できる。
論文 参考訳(メタデータ) (2023-11-19T06:00:39Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
マルチオブジェクトトラッキング(MOT)は、時間とともにシーン内のオブジェクトの位置、外観、アイデンティティを同時に推論する必要がある課題である。
本研究の目的は、トラッキング・バイ・ディテクト・アプローチを超えて、未知のオブジェクト・クラスに対してもよく機能するクラスに依存しないトラッキングへと移行することである。
論文 参考訳(メタデータ) (2022-10-26T10:19:37Z) - OST: Efficient One-stream Network for 3D Single Object Tracking in Point Clouds [6.661881950861012]
本稿では,従来のシームズネットワークで発生した相関操作を回避するために,インスタンスレベルのエンコーディングの強みを活かした新しい一ストリームネットワークを提案する。
提案手法は,クラス固有のトラッキングだけでなく,より少ない計算と高い効率でクラスに依存しないトラッキングを実現する。
論文 参考訳(メタデータ) (2022-10-16T12:31:59Z) - Learning Dynamic Compact Memory Embedding for Deformable Visual Object
Tracking [82.34356879078955]
本稿では,セグメント化に基づく変形可能な視覚追跡手法の識別を強化するために,コンパクトなメモリ埋め込みを提案する。
DAVIS 2017ベンチマークでは,D3SやSiamMaskなどのセグメンテーションベースのトラッカーよりも優れている。
論文 参考訳(メタデータ) (2021-11-23T03:07:12Z) - Visual Tracking by TridentAlign and Context Embedding [71.60159881028432]
本稿では,Siamese ネットワークに基づく視覚的トラッキングのための新しい TridentAlign とコンテキスト埋め込みモジュールを提案する。
提案トラッカーの性能は最先端トラッカーに匹敵するが,提案トラッカーはリアルタイムに動作可能である。
論文 参考訳(メタデータ) (2020-07-14T08:00:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。