論文の概要: Unifying Structure and Activation: A Comprehensive Approach of Parameter and Memory Efficient Transfer Learning
- arxiv url: http://arxiv.org/abs/2503.08154v1
- Date: Tue, 11 Mar 2025 08:10:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 22:35:51.632356
- Title: Unifying Structure and Activation: A Comprehensive Approach of Parameter and Memory Efficient Transfer Learning
- Title(参考訳): 構造と活性化の統一:パラメータと記憶効率向上学習の包括的アプローチ
- Authors: Tian Jin, Enjun Du, Changwei Wang, Wenhao Xu, Ding Luo,
- Abstract要約: 本研究では,微調整時の活性化のメモリフットプリントを低減するため,新しいPETLフレームワークであるStructure to Activation (S2A)を提案する。
提案手法は既存のPETL技術よりも優れており,GPUメモリのフットプリントの4倍の削減を実現している。
また,本手法は,ハードウェア制約デバイス上での実践的な移動学習に非常に適していることを示す。
- 参考スコア(独自算出の注目度): 8.602744958104969
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameter-efficient transfer learning (PETL) aims to reduce the scales of pre-trained models for multiple downstream tasks. However, as the models keep scaling up, the memory footprint of existing PETL methods is not significantly reduced compared to the reduction of learnable parameters. This limitation hinders the practical deployment of PETL methods on memory-constrained devices. To this end, we proposed a new PETL framework, called Structure to Activation (S2A), to reduce the memory footprint of activation during fine-tuning. Specifically, our framework consists of: 1)Activation modules design(i.e. bias, prompt and side modules) in the parametric model structure, which results in a significant reduction of adjustable parameters and activation memory 2) 4-bit quantisation of activations based on their derivatives for non-parametric structures (e.g., nonlinear functions), which maintains accuracy while significantly reducing memory usage. Our S2A method consequently offers a lightweight solution in terms of both parameter and memory footprint. We evaluate S2A with different backbones and conduct extensive experiments on various datasets to evaluate the effectiveness. The results show that our method not only outperforms existing PETL techniques, achieving a fourfold reduction in GPU memory footprint on average, but also shows competitive performance in accuracy with lower tunable parameters. These also demonstrate that our method is highly suitable for practical transfer learning on hardware-constrained devices.
- Abstract(参考訳): パラメータ効率変換学習(PETL)は,複数の下流タスクを対象とした事前学習モデルのスケール削減を目的としている。
しかし,モデルがスケールアップを続けるにつれて,既存のPETL手法のメモリフットプリントは,学習可能なパラメータの削減に比べて大幅に減少しない。
この制限は、PETLメソッドのメモリ制限デバイスへの実践的な展開を妨げる。
そこで我々は,S2A(Structure to Activation)と呼ばれる新しいPETLフレームワークを提案する。
具体的には, 1) パラメータモデル構造におけるアクティベーションモジュールの設計(バイアス, プロンプト, サイドモジュール)から成り, パラメータやアクティベーションメモリの大幅な削減, 2) 非パラメトリック構造(例えば非線形関数)の微分に基づくアクティベーションの4ビット量子化により, メモリ使用量を大幅に削減する。
私たちのS2Aメソッドは、パラメータとメモリフットプリントの両方の観点から軽量なソリューションを提供します。
我々は,異なるバックボーンを用いてS2Aを評価し,その有効性を評価するために,様々なデータセットについて広範な実験を行った。
その結果,提案手法は既存のPETL技術を上回る性能を示し,GPUメモリのフットプリントを平均4倍に削減するだけでなく,調整可能なパラメータの低い精度で競合性能を示すことがわかった。
また,本手法は,ハードウェア制約デバイス上での実践的な移動学習に非常に適していることを示す。
関連論文リスト
- Efficient Multi-Instance Generation with Janus-Pro-Dirven Prompt Parsing [53.295515505026096]
Janus-Pro-driven Prompt Parsingは、テキスト理解とレイアウト生成をブリッジするプロンプト解析モジュールである。
MIGLoRAはパラメータ効率の良いプラグインで、低ランク適応を UNet (SD1.5) と DiT (SD3) のバックボーンに統合する。
提案手法はパラメータ効率を維持しつつCOCOおよびLVISベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2025-03-27T00:59:14Z) - SURGEON: Memory-Adaptive Fully Test-Time Adaptation via Dynamic Activation Sparsity [30.260783715373382]
テスト時間適応(TTA)は、未ラベルのターゲットデータにオンラインで適応することで、ディープモデルの性能を向上させるために出現している。
しかし、特にリソース制約のある端末におけるメモリコストは、ほとんどの後方プロパゲーションベースのTTAメソッドの効果的な展開を妨げる。
メモリの制約に対処するため,SURGEONを導入する。
論文 参考訳(メタデータ) (2025-03-26T09:27:09Z) - WECAR: An End-Edge Collaborative Inference and Training Framework for WiFi-Based Continuous Human Activity Recognition [23.374051991346633]
We propose WECAR, a end-edge collaboration inference and training framework for WiFi-based continuous HAR。
We implement WECAR based on heterogeneous hardware using Jetson Nano as edge device and the ESP32 as end device。
3つの公開WiFiデータセットを対象とした実験により、WECARは性能とパラメータ効率においていくつかの最先端の手法より優れるだけでなく、パラメータカウント後最適化の大幅な削減を実現していることがわかった。
論文 参考訳(メタデータ) (2025-03-09T03:40:27Z) - Sparse Gradient Compression for Fine-Tuning Large Language Models [58.44973963468691]
ダウンストリームタスクのための微調整された大型言語モデル(LLM)は、広く利用されていることと、オープンソースモデルの利用が増加しているために、ますます重要になっている。
微調整に伴う高メモリコストは、特にモデルのサイズが大きくなるにつれて大きな課題である。
これらの制約に対処するためにスパース圧縮勾配(SGC)を提案する。
論文 参考訳(メタデータ) (2025-02-01T04:18:28Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoREは、Kroneckerによって構築された超複素パラメータ化空間をAggregate Low Rank Expertsに再利用する新しいPETL法である。
巧妙な設計のおかげで、ALoREは無視できる余分なパラメータを保持し、凍ったバックボーンに強制的にマージできる。
論文 参考訳(メタデータ) (2024-12-11T12:31:30Z) - MOFHEI: Model Optimizing Framework for Fast and Efficient Homomorphically Encrypted Neural Network Inference [0.8388591755871735]
ホモモルフィック暗号化(HE)により、暗号化データ上で機械学習タスクを実行できる。
HEに基づくニューラルネットワーク推論を高速かつ効率的にするためのモデルを最適化するフレームワークであるMOFHEIを提案する。
このフレームワークはLeNet上で最大98%のプルーニング比を実現し,PI実行に必要なHE操作の最大93%を排除した。
論文 参考訳(メタデータ) (2024-12-10T22:44:54Z) - CARE Transformer: Mobile-Friendly Linear Visual Transformer via Decoupled Dual Interaction [77.8576094863446]
本稿では,新しいdetextbfCoupled dutextbfAl-interactive lineatextbfR atttextbfEntion (CARE) 機構を提案する。
まず,非対称な特徴分離戦略を提案し,非対称的に学習プロセスを局所帰納バイアスと長距離依存に分解する。
分離学習方式を採用し,特徴間の相補性を完全に活用することにより,高い効率性と精度を両立させることができる。
論文 参考訳(メタデータ) (2024-11-25T07:56:13Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) は、PEFT (Efficient Fine Tuning) 法として人気がある。
よりコンパクトで柔軟な表現を可能にする高階Candecomp/Parafac(CP)分解を提案する。
本手法は,比較性能を維持しつつパラメータ数を削減できる。
論文 参考訳(メタデータ) (2024-10-05T06:59:50Z) - Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement [0.7558576228782637]
我々は、効率的なソースフリードメイン適応(SFDA)のためのフレームワークを提案する。
提案手法は,ソースモデル作成およびターゲット側適応のための改良されたパラダイムを導入する。
我々は,本フレームワークが様々なSFDA法と互換性があり,計算効率が高いことを実証した。
論文 参考訳(メタデータ) (2024-10-03T02:12:03Z) - Replacement Learning: Training Vision Tasks with Fewer Learnable Parameters [4.2114456503277315]
置換学習は、冷凍層の全パラメータを2つの学習可能なパラメータで置き換える。
CIFAR-10, STL-10, SVHN, ImageNetの4つのベンチマークデータセットを対象に実験を行った。
提案手法は,エンドツーエンドトレーニングの性能を完全に超えながら,パラメータ数,トレーニング時間,メモリ使用量を削減する。
論文 参考訳(メタデータ) (2024-10-02T05:03:54Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach [87.8330887605381]
本稿では,学習可能なパラメータをわずかに限定して,事前学習した視覚変換器を下流認識タスクに適用する方法を示す。
学習可能で軽量なモジュールを用いてタスク固有のクエリを合成する。
本手法はメモリ制約下での最先端性能を実現し,実環境における適用性を示す。
論文 参考訳(メタデータ) (2024-07-09T15:45:04Z) - Time-, Memory- and Parameter-Efficient Visual Adaptation [75.28557015773217]
バックボーンを介して勾配をバックプロパゲートしない適応法を提案する。
凍結した、事前訓練されたバックボーンの機能を利用する軽量ネットワークを並列に設計することで、これを実現する。
論文 参考訳(メタデータ) (2024-02-05T10:55:47Z) - DTL: Disentangled Transfer Learning for Visual Recognition [21.549234013998255]
軽量なコンパクトサイドネットワーク(CSN)を用いて、トレーニング可能なパラメータをバックボーンから切り離すDTL(Disentangled Transfer Learning)を導入する。
提案手法は,大量のGPUメモリ使用量とトレーニング可能なパラメータを削減できるだけでなく,既存のPETL法よりも高い精度で性能を向上する。
論文 参考訳(メタデータ) (2023-12-13T02:51:26Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
本稿ではパラメータ共有言語モデルの推論効率を向上させる手法を提案する。
また、完全あるいは部分的に共有されたモデルにつながる単純な事前学習手法を提案する。
その結果,本手法が自己回帰的および自己符号化的PLMに与える影響が示された。
論文 参考訳(メタデータ) (2023-10-19T15:13:58Z) - Memory-Efficient Fine-Tuning of Compressed Large Language Models via
sub-4-bit Integer Quantization [27.79783067245817]
大規模言語モデル(LLM)は、高いメモリ要求と計算コストのため、微調整とデプロイメントの課題に直面している。
本稿では,PEFT と量子化 LLM の利点を組み合わせた簡易かつ効果的な手法である PEQA (Efficient Adaptation and Quantization-aware) を提案する。
論文 参考訳(メタデータ) (2023-05-23T15:20:01Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - AlphaTuning: Quantization-Aware Parameter-Efficient Adaptation of
Large-Scale Pre-Trained Language Models [19.640997611256168]
我々は,事前学習された言語モデルの学習後の量子化と,対象タスクの量子化パラメータの一部のみを微調整するAlphaTuningを提案する。
具体的には、AlphaTuningはバイナリ符号化量子化を使用して、完全精度パラメータをバイナリパラメータとスケーリングファクタの別個のセットに分解する。
GPT-2 や OPT に適用されたAlphaTuning は,4ビット量子化条件下での圧縮率 >10x を実現し,トレーニング可能なパラメータ数 >1,000x の削減を図りながら,様々な下流タスクの完全な微調整と競合することを示した。
論文 参考訳(メタデータ) (2022-10-08T00:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。