FASIONAD++ : Integrating High-Level Instruction and Information Bottleneck in FAt-Slow fusION Systems for Enhanced Safety in Autonomous Driving with Adaptive Feedback
- URL: http://arxiv.org/abs/2503.08162v1
- Date: Tue, 11 Mar 2025 08:27:01 GMT
- Title: FASIONAD++ : Integrating High-Level Instruction and Information Bottleneck in FAt-Slow fusION Systems for Enhanced Safety in Autonomous Driving with Adaptive Feedback
- Authors: Kangan Qian, Ziang Luo, Sicong Jiang, Zilin Huang, Jinyu Miao, Zhikun Ma, Tianze Zhu, Jiayin Li, Yangfan He, Zheng Fu, Yining Shi, Boyue Wang, Hezhe Lin, Ziyu Chen, Jiangbo Yu, Xinyu Jiao, Mengmeng Yang, Kun Jiang, Diange Yang,
- Abstract summary: FASIONAD is a novel dual-system framework that synergizes a fast end-to-end planner with a VLM-based reasoning module.<n>In open-loop experiments, FASIONAD achieves a $6.7%$ reduction in average $L2$ trajectory error and $28.1%$ lower collision rate.
- Score: 15.55944950850973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring safe, comfortable, and efficient planning is crucial for autonomous driving systems. While end-to-end models trained on large datasets perform well in standard driving scenarios, they struggle with complex low-frequency events. Recent Large Language Models (LLMs) and Vision Language Models (VLMs) advancements offer enhanced reasoning but suffer from computational inefficiency. Inspired by the dual-process cognitive model "Thinking, Fast and Slow", we propose $\textbf{FASIONAD}$ -- a novel dual-system framework that synergizes a fast end-to-end planner with a VLM-based reasoning module. The fast system leverages end-to-end learning to achieve real-time trajectory generation in common scenarios, while the slow system activates through uncertainty estimation to perform contextual analysis and complex scenario resolution. Our architecture introduces three key innovations: (1) A dynamic switching mechanism enabling slow system intervention based on real-time uncertainty assessment; (2) An information bottleneck with high-level plan feedback that optimizes the slow system's guidance capability; (3) A bidirectional knowledge exchange where visual prompts enhance the slow system's reasoning while its feedback refines the fast planner's decision-making. To strengthen VLM reasoning, we develop a question-answering mechanism coupled with reward-instruct training strategy. In open-loop experiments, FASIONAD achieves a $6.7\%$ reduction in average $L2$ trajectory error and $28.1\%$ lower collision rate.
Related papers
- DriveTransformer: Unified Transformer for Scalable End-to-End Autonomous Driving [62.62464518137153]
DriveTransformer is a simplified E2E-AD framework for the ease of scaling up.<n>It is composed of three unified operations: task self-attention, sensor cross-attention, temporal cross-attention.<n>It achieves state-of-the-art performance in both simulated closed-loop benchmark Bench2Drive and real world open-loop benchmark nuScenes with high FPS.
arXiv Detail & Related papers (2025-03-07T11:41:18Z) - Distilling Multi-modal Large Language Models for Autonomous Driving [64.63127269187814]
Recent end-to-end autonomous driving systems leverage large language models (LLMs) as planners to improve generalizability to rare events.
We propose DiMA, an end-to-end autonomous driving system that maintains the efficiency of an LLM-free (or vision-based) planner while leveraging the world knowledge of an LLM.
Training with DiMA results in a 37% reduction in the L2 trajectory error and an 80% reduction in the collision rate of the vision-based planner, as well as a 44% trajectory error reduction in longtail scenarios.
arXiv Detail & Related papers (2025-01-16T18:59:53Z) - LeapVAD: A Leap in Autonomous Driving via Cognitive Perception and Dual-Process Thinking [13.898774643126174]
LeapVAD implements a human-attentional mechanism to identify and focus on critical traffic elements that influence driving decisions.<n>System consists of an Analytic Process (System-II) that accumulates driving experience through logical reasoning and a Heuristic Process (System-I) that refines this knowledge via fine-tuning and few-shot learning.
arXiv Detail & Related papers (2025-01-14T14:49:45Z) - FASIONAD : FAst and Slow FusION Thinking Systems for Human-Like Autonomous Driving with Adaptive Feedback [15.805379735361862]
This paper presents FASIONAD, a novel dual-system framework inspired by the cognitive model "Thinking, Fast and Slow"<n>The fast system handles routine navigation tasks using rapid, data-driven path planning, while the slow system focuses on complex reasoning and decision-making in challenging or unfamiliar situations.<n>Visual prompts generated by the fast system enable human-like reasoning in the slow system, which provides high-quality feedback to enhance the fast system's decision-making.
arXiv Detail & Related papers (2024-11-27T03:14:16Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.<n>Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.<n>Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - Real-Time Anomaly Detection and Reactive Planning with Large Language Models [18.57162998677491]
Foundation models, e.g., large language models (LLMs), trained on internet-scale data possess zero-shot capabilities.
We present a two-stage reasoning framework that incorporates the judgement regarding potential anomalies into a safe control framework.
This enables our monitor to improve the trustworthiness of dynamic robotic systems, such as quadrotors or autonomous vehicles.
arXiv Detail & Related papers (2024-07-11T17:59:22Z) - A Self-Correcting Vision-Language-Action Model for Fast and Slow System Manipulation [30.207690822989292]
Self-corrected (SC-)VLA framework integrates fast system for directly predicting actions and slow system for reflecting on failed actions.
For the fast system, we incorporate parameter-efficient fine-tuning to equip the model with pose prediction capabilities.
For the slow system, we propose a Chain-of-Thought training strategy for failure correction, designed to mimic human reflection after a manipulation failure.
arXiv Detail & Related papers (2024-05-27T17:58:48Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
Vehicle Re-Identification is one of the key elements in city-scale vehicle analytics systems.
Many state-of-the-art solutions for vehicle re-id mostly focus on improving the accuracy on existing re-id benchmarks and often ignore computational complexity.
We propose a simple yet effective hybrid solution empowered by self-supervised training which only uses a single network during inference time.
arXiv Detail & Related papers (2022-05-16T12:14:42Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day.
We propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks.
arXiv Detail & Related papers (2021-05-18T19:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.