TSCnet: A Text-driven Semantic-level Controllable Framework for Customized Low-Light Image Enhancement
- URL: http://arxiv.org/abs/2503.08168v1
- Date: Tue, 11 Mar 2025 08:30:50 GMT
- Title: TSCnet: A Text-driven Semantic-level Controllable Framework for Customized Low-Light Image Enhancement
- Authors: Miao Zhang, Jun Yin, Pengyu Zeng, Yiqing Shen, Shuai Lu, Xueqian Wang,
- Abstract summary: We propose a new light enhancement task and a new framework that provides customized lighting control through prompt-driven, semantic-level, and quantitative brightness adjustments.<n> Experimental results on benchmark datasets demonstrate our framework's superior performance at increasing visibility, maintaining natural color balance, and amplifying fine details without creating artifacts.
- Score: 30.498816319802412
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning-based image enhancement methods show significant advantages in reducing noise and improving visibility in low-light conditions. These methods are typically based on one-to-one mapping, where the model learns a direct transformation from low light to specific enhanced images. Therefore, these methods are inflexible as they do not allow highly personalized mapping, even though an individual's lighting preferences are inherently personalized. To overcome these limitations, we propose a new light enhancement task and a new framework that provides customized lighting control through prompt-driven, semantic-level, and quantitative brightness adjustments. The framework begins by leveraging a Large Language Model (LLM) to understand natural language prompts, enabling it to identify target objects for brightness adjustments. To localize these target objects, the Retinex-based Reasoning Segment (RRS) module generates precise target localization masks using reflection images. Subsequently, the Text-based Brightness Controllable (TBC) module adjusts brightness levels based on the generated illumination map. Finally, an Adaptive Contextual Compensation (ACC) module integrates multi-modal inputs and controls a conditional diffusion model to adjust the lighting, ensuring seamless and precise enhancements accurately. Experimental results on benchmark datasets demonstrate our framework's superior performance at increasing visibility, maintaining natural color balance, and amplifying fine details without creating artifacts. Furthermore, its robust generalization capabilities enable complex semantic-level lighting adjustments in diverse open-world environments through natural language interactions.
Related papers
- Adaptive Low Light Enhancement via Joint Global-Local Illumination Adjustment [0.0]
We propose a novel brightness-adaptive enhancement framework to tackle the challenge of local exposure inconsistencies in low-light images.
Our method achieves superior quantitative and qualitative results compared to state-of-the-art algorithms.
arXiv Detail & Related papers (2025-04-01T03:46:28Z) - DifFRelight: Diffusion-Based Facial Performance Relighting [12.909429637057343]
We present a novel framework for free-viewpoint facial performance relighting using diffusion-based image-to-image translation.
We train a diffusion model for precise lighting control, enabling high-fidelity relit facial images from flat-lit inputs.
The model accurately reproduces complex lighting effects like eye reflections, subsurface scattering, self-shadowing, and translucency.
arXiv Detail & Related papers (2024-10-10T17:56:44Z) - ALEN: A Dual-Approach for Uniform and Non-Uniform Low-Light Image Enhancement [10.957431540794836]
Inadequate illumination can lead to significant information loss and poor image quality, impacting various applications such as surveillance.<n>Current enhancement techniques often use specific datasets to enhance low-light images, but still present challenges when adapting to diverse real-world conditions.<n>The Adaptive Light Enhancement Network (ALEN) is introduced, whose main approach is the use of a classification mechanism to determine whether local or global illumination enhancement is required.
arXiv Detail & Related papers (2024-07-29T05:19:23Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
Low-light image enhancement (LLIE) aims to improve low-illumination images.
Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.
We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
arXiv Detail & Related papers (2024-04-08T07:34:39Z) - A Non-Uniform Low-Light Image Enhancement Method with Multi-Scale
Attention Transformer and Luminance Consistency Loss [11.585269110131659]
Low-light image enhancement aims to improve the perception of images collected in dim environments.
Existing methods cannot adaptively extract the differentiated luminance information, which will easily cause over-exposure and under-exposure.
We propose a multi-scale attention Transformer named MSATr, which sufficiently extracts local and global features for light balance to improve the visual quality.
arXiv Detail & Related papers (2023-12-27T10:07:11Z) - Dimma: Semi-supervised Low Light Image Enhancement with Adaptive Dimming [0.728258471592763]
Enhancing low-light images while maintaining natural colors is a challenging problem due to camera processing variations.
We propose Dimma, a semi-supervised approach that aligns with any camera by utilizing a small set of image pairs.
We achieve that by introducing a convolutional mixture density network that generates distorted colors of the scene based on the illumination differences.
arXiv Detail & Related papers (2023-10-14T17:59:46Z) - Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network [69.96295927854042]
Low-light environments usually lead to less informative large-scale dark areas.
We propose to integrate the effectiveness of gamma correction with the strong modelling capacities of deep networks.
Because exponential operation introduces high computational complexity, we propose to use Taylor Series to approximate gamma correction.
arXiv Detail & Related papers (2023-08-16T08:46:51Z) - CLE Diffusion: Controllable Light Enhancement Diffusion Model [80.62384873945197]
Controllable Light Enhancement Diffusion Model, dubbed CLE Diffusion, is a novel diffusion framework to provide users with rich controllability.
Built with a conditional diffusion model, we introduce an illumination embedding to let users control their desired brightness level.
arXiv Detail & Related papers (2023-08-13T09:05:56Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
This paper presents the deep compensation network unfolding (DCUNet) for restoring light field (LF) images captured under low-light conditions.
The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result.
To properly leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module.
arXiv Detail & Related papers (2023-08-10T07:53:06Z) - Learning Semantic-Aware Knowledge Guidance for Low-Light Image
Enhancement [69.47143451986067]
Low-light image enhancement (LLIE) investigates how to improve illumination and produce normal-light images.
The majority of existing methods improve low-light images via a global and uniform manner, without taking into account the semantic information of different regions.
We propose a novel semantic-aware knowledge-guided framework that can assist a low-light enhancement model in learning rich and diverse priors encapsulated in a semantic segmentation model.
arXiv Detail & Related papers (2023-04-14T10:22:28Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.