Physics-based AI methodology for Material Parameter Extraction from Optical Data
- URL: http://arxiv.org/abs/2503.08183v1
- Date: Tue, 11 Mar 2025 08:49:45 GMT
- Title: Physics-based AI methodology for Material Parameter Extraction from Optical Data
- Authors: M. Koumans, J. L. M. van Mechelen,
- Abstract summary: The proposed model integrates classical optimization frameworks with a multi-scale object detection framework.<n>We validate and analyze its performance on simulated transmission spectra at terahertz and infrared frequencies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We report on a novel methodology for extracting material parameters from spectroscopic optical data using a physics-based neural network. The proposed model integrates classical optimization frameworks with a multi-scale object detection framework, specifically exploring the effect of incorporating physics into the neural network. We validate and analyze its performance on simulated transmission spectra at terahertz and infrared frequencies. Compared to traditional model-based approaches, our method is designed to be autonomous, robust, and time-efficient, making it particularly relevant for industrial and societal applications.
Related papers
- Designing Observables for Measurements with Deep Learning [0.12277343096128711]
We propose to design targeted observables with machine learning.
Unfolded, differential cross sections in a neural network output contain the most information about parameters of interest.
We demonstrate this idea in simulation using two physics models for inclusive measurements in deep in scattering.
arXiv Detail & Related papers (2023-10-12T20:54:34Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - PAC-NeRF: Physics Augmented Continuum Neural Radiance Fields for
Geometry-Agnostic System Identification [64.61198351207752]
Existing approaches to system identification (estimating the physical parameters of an object) from videos assume known object geometries.
In this work, we aim to identify parameters characterizing a physical system from a set of multi-view videos without any assumption on object geometry or topology.
We propose "Physics Augmented Continuum Neural Radiance Fields" (PAC-NeRF), to estimate both the unknown geometry and physical parameters of highly dynamic objects from multi-view videos.
arXiv Detail & Related papers (2023-03-09T18:59:50Z) - Physics-aware Differentiable Discrete Codesign for Diffractive Optical
Neural Networks [12.952987240366781]
This work proposes a novel device-to-system hardware-software codesign framework, which enables efficient training of Diffractive optical neural networks (DONNs)
Gumbel-Softmax is employed to enable differentiable discrete mapping from real-world device parameters into the forward function of DONNs.
The results have demonstrated that our proposed framework offers significant advantages over conventional quantization-based methods.
arXiv Detail & Related papers (2022-09-28T17:13:28Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
We propose to combine neural implicit representations for appearance modeling with neural ordinary differential equations (ODEs) for modelling physical phenomena.
Our proposed model combines several unique advantages: (i) Contrary to existing approaches that require large training datasets, we are able to identify physical parameters from only a single video.
The use of neural implicit representations enables the processing of high-resolution videos and the synthesis of photo-realistic images.
arXiv Detail & Related papers (2022-04-29T11:55:35Z) - Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems [0.0]
We propose a physics-guided hybrid approach for modeling non-autonomous systems under control.
This is extended by a recurrent neural network and trained using a sophisticated multi-objective strategy.
Experiments conducted on real data reveal substantial accuracy improvements by our approach compared to a physics-based model.
arXiv Detail & Related papers (2022-04-27T14:33:02Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
We present a data-driven correlation to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios.
A material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve leaflet.
The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material properties learned implicitly from the data and naturally embedded in the network parameters.
arXiv Detail & Related papers (2022-04-01T04:56:41Z) - Investigation of Nonlinear Model Order Reduction of the Quasigeostrophic
Equations through a Physics-Informed Convolutional Autoencoder [0.0]
Reduced order modeling (ROM) approximates complex physics-based models of real-world processes by inexpensive surrogates.
In this paper we explore the construction of ROM using autoencoders (AE) that perform nonlinear projections of the system dynamics onto a low dimensional manifold.
Our investigation using the quasi-geostrophic equations reveals that while the PI cost function helps with spatial reconstruction, spatial features are less powerful than spectral features.
arXiv Detail & Related papers (2021-08-27T15:20:01Z) - Differentiable Programming for Hyperspectral Unmixing using a
Physics-based Dispersion Model [9.96234892716562]
In this paper, spectral variation is considered from a physics-based approach and incorporated into an end-to-end spectral unmixing algorithm.
A technique for inverse rendering using a convolutional neural network is introduced to enhance performance and speed when training data is available.
Results achieve state-of-the-art on both infrared and visible-to-near-infrared (VNIR) datasets.
arXiv Detail & Related papers (2020-07-12T14:16:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.