論文の概要: Residual Gaussian Process: A Tractable Nonparametric Bayesian Emulator
for Multi-fidelity Simulations
- arxiv url: http://arxiv.org/abs/2104.03743v1
- Date: Thu, 8 Apr 2021 12:57:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-09 12:49:05.861833
- Title: Residual Gaussian Process: A Tractable Nonparametric Bayesian Emulator
for Multi-fidelity Simulations
- Title(参考訳): 残留ガウス過程:マルチフィデリティシミュレーションのための可搬性非パラメトリックベイズエミュレータ
- Authors: Wei W. Xing, Akeel A. Shah, Peng Wang, Shandian Zhe Qian Fu, and
Robert. M. Kirby
- Abstract要約: 高い忠実度溶液を最低忠実度溶液と残留物の和として記述する新規な付加構造が導入された。
得られたモデルは、予測後部のための閉形式解を備える。
特に計算予算が限られているモデルを改善するために,アクティブな学習がいかに有効かを示す。
- 参考スコア(独自算出の注目度): 6.6903363553912305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Challenges in multi-fidelity modeling relate to accuracy, uncertainty
estimation and high-dimensionality. A novel additive structure is introduced in
which the highest fidelity solution is written as a sum of the lowest fidelity
solution and residuals between the solutions at successive fidelity levels,
with Gaussian process priors placed over the low fidelity solution and each of
the residuals. The resulting model is equipped with a closed-form solution for
the predictive posterior, making it applicable to advanced, high-dimensional
tasks that require uncertainty estimation. Its advantages are demonstrated on
univariate benchmarks and on three challenging multivariate problems. It is
shown how active learning can be used to enhance the model, especially with a
limited computational budget. Furthermore, error bounds are derived for the
mean prediction in the univariate case.
- Abstract(参考訳): 多重忠実性モデリングにおける課題は、精度、不確実性推定、高次元性に関するものである。
最下位の忠実度解の和として最も高い忠実度解と連続する忠実度レベルにおける解間の残差とが書かれ、ガウス過程が低忠実度解および各残差の上に置かれる新規な付加構造が導入された。
得られたモデルは予測後段に対する閉形式解を備えており、不確実性推定を必要とする高度な高次元タスクに適用できる。
その利点は、単変量ベンチマークと3つの挑戦的多変量問題で示される。
特に計算予算が限られているモデルを改善するために,アクティブな学習がいかに有効かを示す。
さらに、不定値の場合の平均予測に対して誤差境界を導出する。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Continuous Bayesian Model Selection for Multivariate Causal Discovery [22.945274948173182]
現在の因果的発見アプローチは、構造的識別可能性を確保するために、限定的なモデル仮定や介入データへのアクセスを必要とする。
近年の研究では、ベイズモデルの選択はより柔軟な仮定のために制限的モデリングを交換することで精度を大幅に向上させることができることが示されている。
合成データセットと実世界のデータセットの両方において、我々のアプローチの競争力を実証する。
論文 参考訳(メタデータ) (2024-11-15T12:55:05Z) - Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
機械学習の幅広い問題にまたがる正規化誤差フィードバックアルゴリズムに対する収束の最初の証明を提供する。
提案手法では,許容可能なステップサイズが大きくなったため,新しい正規化エラーフィードバックアルゴリズムは,各種タスクにおける非正規化エラーよりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T10:19:27Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
サロゲートモデルは複雑な計算モデルに対して素早く評価できる近似を提供する。
入力の不確かさと次元減少を伴う統計的代理を構築するためのベイズ推定について考察する。
コスト関数がモデル出力の平均および標準偏差の重み付け和に依存するような本質的で頑健な構造最適化問題を示す。
論文 参考訳(メタデータ) (2024-04-23T09:22:35Z) - Low-Rank Extragradient Methods for Scalable Semidefinite Optimization [0.0]
この問題が低ランクの解を許容する高次元かつ高可算な設定に焦点をあてる。
これらの条件下では、よく知られた過次法が制約付き最適化問題の解に収束することを示す理論的結果がいくつか提示される。
論文 参考訳(メタデータ) (2024-02-14T10:48:00Z) - Optimal Learning via Moderate Deviations Theory [4.6930976245638245]
我々は、中等度偏差原理に基づくアプローチを用いて、高精度な信頼区間の体系的構築を開発する。
提案した信頼区間は,指数的精度,最小性,整合性,誤評価確率,結果整合性(UMA)特性の基準を満たすという意味で統計的に最適であることが示されている。
論文 参考訳(メタデータ) (2023-05-23T19:57:57Z) - RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction
for High-dimensional Uncertainty Quantification [12.826754199680474]
マルチフィデリティモデリングは、少量の正確なデータしか入手できない場合でも、正確な推測を可能にする。
高忠実度モデルと1つ以上の低忠実度モデルを組み合わせることで、多忠実度法は興味のある量の正確な予測を行うことができる。
本稿では,回転多要素ガウス過程の回帰に基づく新しい次元削減フレームワークとベイズ能動学習手法を提案する。
論文 参考訳(メタデータ) (2022-04-11T01:20:35Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
暗黙のニューラルネットワークは、精度の向上とメモリ消費の大幅な削減を示す。
彼らは不利な姿勢と収束の不安定さに悩まされる。
本論文は,ニューラルネットワークを高機能かつ頑健に設計するための新しい枠組みを提供する。
論文 参考訳(メタデータ) (2021-06-06T18:05:02Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。