Accelerated Distributed Optimization with Compression and Error Feedback
- URL: http://arxiv.org/abs/2503.08427v2
- Date: Sat, 29 Mar 2025 20:52:06 GMT
- Title: Accelerated Distributed Optimization with Compression and Error Feedback
- Authors: Yuan Gao, Anton Rodomanov, Jeremy Rack, Sebastian U. Stich,
- Abstract summary: ADEF integrates Nesterov acceleration, contractive compression, error feedback, and gradient difference compression.<n>We prove that ADEF achieves the first accelerated convergence rate for distributed optimization with contractive compression.
- Score: 22.94016026311574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern machine learning tasks often involve massive datasets and models, necessitating distributed optimization algorithms with reduced communication overhead. Communication compression, where clients transmit compressed updates to a central server, has emerged as a key technique to mitigate communication bottlenecks. However, the theoretical understanding of stochastic distributed optimization with contractive compression remains limited, particularly in conjunction with Nesterov acceleration -- a cornerstone for achieving faster convergence in optimization. In this paper, we propose a novel algorithm, ADEF (Accelerated Distributed Error Feedback), which integrates Nesterov acceleration, contractive compression, error feedback, and gradient difference compression. We prove that ADEF achieves the first accelerated convergence rate for stochastic distributed optimization with contractive compression in the general convex regime. Numerical experiments validate our theoretical findings and demonstrate the practical efficacy of ADEF in reducing communication costs while maintaining fast convergence.
Related papers
- Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
We introduce Catalyst Acceleration and propose an acceleration Decentralized Federated Learning algorithm called DFedCata.
DFedCata consists of two main components: the Moreau envelope function, which addresses parameter inconsistencies, and Nesterov's extrapolation step, which accelerates the aggregation phase.
Empirically, we demonstrate the advantages of the proposed algorithm in both convergence speed and generalization performance on CIFAR10/100 with various non-iid data distributions.
arXiv Detail & Related papers (2024-10-09T06:17:16Z) - Differential error feedback for communication-efficient decentralized learning [48.924131251745266]
We propose a new decentralized communication-efficient learning approach that blends differential quantization with error feedback.
We show that the resulting communication-efficient strategy is stable both in terms of mean-square error and average bit rate.
The results establish that, in the small step-size regime and with a finite number of bits, it is possible to attain the performance achievable in the absence of compression.
arXiv Detail & Related papers (2024-06-26T15:11:26Z) - Communication-Efficient Distributed Learning with Local Immediate Error
Compensation [95.6828475028581]
We propose the Local Immediate Error Compensated SGD (LIEC-SGD) optimization algorithm.
LIEC-SGD is superior to previous works in either the convergence rate or the communication cost.
arXiv Detail & Related papers (2024-02-19T05:59:09Z) - Lower Bounds and Accelerated Algorithms in Distributed Stochastic
Optimization with Communication Compression [31.107056382542417]
Communication compression is an essential strategy for alleviating communication overhead.
We propose NEOLITHIC, a nearly optimal algorithm for compression under mild conditions.
arXiv Detail & Related papers (2023-05-12T17:02:43Z) - Optimal Rate Adaption in Federated Learning with Compressed
Communications [28.16239232265479]
Federated Learning incurs high communication overhead, which can be greatly alleviated by compression for model updates.
tradeoff between compression and model accuracy in the networked environment remains unclear.
We present a framework to maximize the final model accuracy by strategically adjusting the compression each iteration.
arXiv Detail & Related papers (2021-12-13T14:26:15Z) - Compressing gradients by exploiting temporal correlation in momentum-SGD [17.995905582226463]
We analyze compression methods that exploit temporal correlation in systems with and without error-feedback.
Experiments with the ImageNet dataset demonstrate that our proposed methods offer significant reduction in the rate of communication.
We prove the convergence of SGD under an expected error assumption by establishing a bound for the minimum gradient norm.
arXiv Detail & Related papers (2021-08-17T18:04:06Z) - Decentralized Composite Optimization with Compression [36.75785129001134]
We study the decentralized composite optimization problem with a potentially non-smooth component.
A convergent underlineDecentralized algorithm with compression, Prox-LEAD, is proposed.
Our theorems indicate that Prox-LEAD works with arbitrary compression precision, and it tremendously reduces the communication cost almost for free.
arXiv Detail & Related papers (2021-08-10T04:54:52Z) - A Linearly Convergent Algorithm for Decentralized Optimization: Sending
Less Bits for Free! [72.31332210635524]
Decentralized optimization methods enable on-device training of machine learning models without a central coordinator.
We propose a new randomized first-order method which tackles the communication bottleneck by applying randomized compression operators.
We prove that our method can solve the problems without any increase in the number of communications compared to the baseline.
arXiv Detail & Related papers (2020-11-03T13:35:53Z) - Linear Convergent Decentralized Optimization with Compression [50.44269451541387]
Existing decentralized algorithms with compression mainly focus on compressing DGD-type algorithms.
Motivated by primal-dual algorithms, this paper proposes first underlineLinunderlineEAr convergent.
underlineDecentralized with compression, LEAD.
arXiv Detail & Related papers (2020-07-01T04:35:00Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
We propose a novel structured sparsification method for efficient network compression.
The proposed method automatically induces structured sparsity on the convolutional weights.
We also address the problem of inter-group communication with a learnable channel shuffle mechanism.
arXiv Detail & Related papers (2020-02-19T12:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.