論文の概要: ReviewAgents: Bridging the Gap Between Human and AI-Generated Paper Reviews
- arxiv url: http://arxiv.org/abs/2503.08506v1
- Date: Tue, 11 Mar 2025 14:56:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:44:21.661859
- Title: ReviewAgents: Bridging the Gap Between Human and AI-Generated Paper Reviews
- Title(参考訳): レビューAgents:人間とAIによる論文レビューのギャップを埋める
- Authors: Xian Gao, Jiacheng Ruan, Jingsheng Gao, Ting Liu, Yuzhuo Fu,
- Abstract要約: 学術論文レビュー(Academic paper review)は、研究コミュニティにおける批判的だが時間を要する課題である。
学術出版物の増加に伴い、レビュープロセスの自動化が大きな課題となっている。
大規模言語モデル(LLM)を利用して学術論文レビューを生成するフレームワークであるReviewAgentsを提案する。
- 参考スコア(独自算出の注目度): 26.031039064337907
- License:
- Abstract: Academic paper review is a critical yet time-consuming task within the research community. With the increasing volume of academic publications, automating the review process has become a significant challenge. The primary issue lies in generating comprehensive, accurate, and reasoning-consistent review comments that align with human reviewers' judgments. In this paper, we address this challenge by proposing ReviewAgents, a framework that leverages large language models (LLMs) to generate academic paper reviews. We first introduce a novel dataset, Review-CoT, consisting of 142k review comments, designed for training LLM agents. This dataset emulates the structured reasoning process of human reviewers-summarizing the paper, referencing relevant works, identifying strengths and weaknesses, and generating a review conclusion. Building upon this, we train LLM reviewer agents capable of structured reasoning using a relevant-paper-aware training method. Furthermore, we construct ReviewAgents, a multi-role, multi-LLM agent review framework, to enhance the review comment generation process. Additionally, we propose ReviewBench, a benchmark for evaluating the review comments generated by LLMs. Our experimental results on ReviewBench demonstrate that while existing LLMs exhibit a certain degree of potential for automating the review process, there remains a gap when compared to human-generated reviews. Moreover, our ReviewAgents framework further narrows this gap, outperforming advanced LLMs in generating review comments.
- Abstract(参考訳): 学術論文レビュー(Academic paper review)は、研究コミュニティにおける批判的だが時間を要する課題である。
学術出版物の増加に伴い、レビュープロセスの自動化が大きな課題となっている。
主な問題は、人間の審査員の判断に沿う包括的な、正確で、推論に一貫性のあるレビューコメントを生成することである。
本稿では,大規模言語モデル(LLM)を利用した学術論文レビュー作成フレームワークであるReviewAgentsを提案することで,この問題に対処する。
まず、LLMエージェントのトレーニング用に設計された142kのレビューコメントからなる新しいデータセット、Review-CoTを紹介する。
このデータセットは、人間レビュアーの構造的推論過程をエミュレートし、論文を要約し、関連する作品を参照し、強さと弱点を特定し、レビューの結論を生成する。
そこで我々は,LLMレビュアーエージェントに対して,関連紙認識学習法を用いて構造化推論を行えるように訓練する。
さらに,マルチロールマルチLLMエージェントレビューフレームワークであるReviewAgentsを構築し,レビューコメント生成プロセスを強化する。
また,LLMが生成したレビューコメントを評価するためのベンチマークであるReviewBenchを提案する。
ReviewBench 実験の結果,既存の LLM はレビュープロセスの自動化にある程度の可能性を秘めているものの,人間によるレビューに比べれば差があることがわかった。
さらに、我々のReviewAgentsフレームワークはこのギャップをさらに狭め、レビューコメントの生成において高度なLLMよりも優れています。
関連論文リスト
- Generative Adversarial Reviews: When LLMs Become the Critic [1.2430809884830318]
本稿では,LLMを利用したエージェントを利用して,忠実なピアレビュアーをシミュレートするジェネレーティブエージェントレビュアー(GAR)を紹介する。
このアプローチの中心は、グラフベースの原稿表現であり、コンテンツを凝縮し、情報を論理的に整理する。
本実験は,GARが人間レビュアーに対して,詳細なフィードバックと論文結果の予測を行う上で,相容れない性能を示すことを示した。
論文 参考訳(メタデータ) (2024-12-09T06:58:17Z) - Are We There Yet? Revealing the Risks of Utilizing Large Language Models in Scholarly Peer Review [66.73247554182376]
大規模言語モデル(LLM)がピアレビューに統合された。
未確認のLLMの採用は、ピアレビューシステムの完全性に重大なリスクをもたらす。
5%のレビューを操作すれば、論文の12%が上位30%のランキングでその地位を失う可能性がある。
論文 参考訳(メタデータ) (2024-12-02T16:55:03Z) - AI-Driven Review Systems: Evaluating LLMs in Scalable and Bias-Aware Academic Reviews [18.50142644126276]
我々は,人選好のアリーナを用いて,人選好と自動レビューのアライメントを評価する。
我々は、LLMを微調整して人間の好みを予測し、LLM同士の真っ向からの戦いにおいて、どのレビューが好まれるかを予測する。
我々は、公開可能なarXivおよびオープンアクセスのNatureジャーナルのレビューをオンラインで公開し、著者が研究論文をレビューし、改訂し、品質を改善するのに役立つ無料サービスを提供しています。
論文 参考訳(メタデータ) (2024-08-19T19:10:38Z) - LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
大規模言語モデル(LLM)は、様々な生成タスクにおいて顕著な汎用性を示している。
本研究は,NLP研究者を支援するLLMの話題に焦点を当てる。
私たちの知る限りでは、このような包括的な分析を提供するのはこれが初めてです。
論文 参考訳(メタデータ) (2024-06-24T01:30:22Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - Reviewer2: Optimizing Review Generation Through Prompt Generation [28.050468098801872]
本稿では、Reviewer2と呼ばれる効率的な2段階レビュー生成フレームワークを提案する。
従来の作業とは異なり、このアプローチは、レビューが対処する可能性のある側面の分布を明示的にモデル化する。
アスペクトプロンプトでアノテートした27k論文と99kレビューの大規模なレビューデータセットを生成します。
論文 参考訳(メタデータ) (2024-02-16T18:43:10Z) - PRE: A Peer Review Based Large Language Model Evaluator [14.585292530642603]
既存のパラダイムは、LLMの性能を評価するために、人間アノテーションまたはモデルベースの評価器のいずれかに依存している。
ピアレビュープロセスを通じてLLMを自動的に評価できる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-28T12:33:14Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
我々は,命令追従出力の識別におけるLLM評価器の能力をテストするために,挑戦的なメタ評価ベンチマーク LLMBar を導入する。
異なる評価器がLLMBarに対して異なる性能を示し、最高の評価器でさえ改善の余地があることが判明した。
論文 参考訳(メタデータ) (2023-10-11T16:38:11Z) - Can Large Language Models Be an Alternative to Human Evaluations? [80.81532239566992]
大規模言語モデル(LLM)は、タスク命令のみを提供する場合、目に見えないタスクに対して例外的な性能を示す。
LLM評価の結果は、専門家による評価の結果と一致していることを示す。
論文 参考訳(メタデータ) (2023-05-03T07:28:50Z) - Ranking Scientific Papers Using Preference Learning [48.78161994501516]
我々はこれをピアレビューテキストとレビュアースコアに基づく論文ランキング問題とみなした。
ピアレビューに基づいて最終決定を行うための,新しい多面的総合評価フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-02T19:41:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。