論文の概要: GoAI: Enhancing AI Students' Learning Paths and Idea Generation via Graph of AI Ideas
- arxiv url: http://arxiv.org/abs/2503.08549v2
- Date: Tue, 19 Aug 2025 12:21:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 15:36:31.42279
- Title: GoAI: Enhancing AI Students' Learning Paths and Idea Generation via Graph of AI Ideas
- Title(参考訳): GoAI:AI学生の学習パスとアイデア生成をAI思想のグラフを通じて促進する
- Authors: Xian Gao, Zongyun Zhang, Ting Liu, Yuzhuo Fu,
- Abstract要約: GoAIは、AI研究論文から教育知識グラフを構築するためのツールである。
私たちが構築したナレッジグラフのノードには、論文やコンセプト、スキル、ツールといった必要不可欠な知識が含まれています。
学生が特定の論文を検索すると、ビームサーチに基づく経路探索法がフィールドの現況を辿ることができる。
- 参考スコア(独自算出の注目度): 25.639879648688208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancement of artificial intelligence technology, AI students are confronted with a significant "information-to-innovation" gap: they must navigate through the rapidly expanding body of literature, trace the development of a specific research field, and synthesize various techniques into feasible innovative concepts. An additional critical step for students is to identify the necessary prerequisite knowledge and learning paths. Although many approaches based on large language models (LLMs) can summarize the content of papers and trace the development of a field through citations, these methods often overlook the prerequisite knowledge involved in the papers and the rich semantic information embedded in the citation relationships between papers. Such information reveals how methods are interrelated, built upon, extended, or challenged. To address these limitations, we propose GoAI, a tool for constructing educational knowledge graphs from AI research papers that leverages these graphs to plan personalized learning paths and support creative ideation. The nodes in the knowledge graph we have built include papers and the prerequisite knowledge, such as concepts, skills, and tools, that they involve; the edges record the semantic information of citations. When a student queries a specific paper, a beam search-based path search method can trace the current development trends of the field from the queried paper and plan a learning path toward cutting-edge objectives. The integrated Idea Studio guides students to clarify problem statements, compare alternative designs, and provide formative feedback on novelty, clarity, feasibility, and alignment with learning objectives.
- Abstract(参考訳): 人工知能技術の急速な進歩により、AIの学生は「情報から革新へと」大きなギャップに直面している。彼らは急速に拡大する文学の体をナビゲートし、特定の研究分野の発展を辿り、様々な技術を実現可能な革新的な概念に合成しなければならない。
学生にとっての新たな重要なステップは、必要な前提知識と学習パスを特定することである。
大規模言語モデル(LLM)に基づく多くのアプローチは、論文の内容を要約し、引用を通して分野の発達を辿ることができるが、これらの手法は論文の前提となる知識と論文間の引用関係に埋め込まれたリッチな意味情報を見落としていることが多い。
このような情報は、メソッドがどのように相互に関連付けられ、構築され、拡張され、挑戦されているかを明らかにする。
これらの制限に対処するため、AI研究論文から教育知識グラフを構築するツールであるGoAIを提案し、これらのグラフを活用してパーソナライズされた学習パスを計画し、創造的思考をサポートする。
私たちが構築したナレッジグラフのノードには、それらが関与する概念、スキル、ツールといった必要不可欠な知識が含まれています。
学生が特定の論文を問い合わせると、ビームサーチに基づくパスサーチ手法は、クエリされた論文からフィールドの現在の発達傾向をトレースし、最先端の目的に向けて学習経路を計画することができる。
統合されたイデオロギースタジオは、生徒に問題ステートメントを明確にし、代替デザインを比較し、新規性、明確性、実現可能性、学習目標との整合性に関する形式的なフィードバックを提供する。
関連論文リスト
- From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents [96.65646344634524]
推論とエージェント能力を備えた大規模言語モデル(LLM)は、エージェントディープリサーチ(Agenic Deep Research)と呼ばれる新しいパラダイムを取り入れている。
静的なWeb検索から,計画,探索,学習を行う対話型エージェントベースのシステムへの進化を辿ります。
我々はエージェントディープリサーチが既存のアプローチを著しく上回るだけでなく、将来の情報探索において支配的なパラダイムになることを実証する。
論文 参考訳(メタデータ) (2025-06-23T17:27:19Z) - The Budget AI Researcher and the Power of RAG Chains [4.797627592793464]
研究アイデア生成への現在のアプローチは、しばしばジェネリック・大型言語モデル(LLM)に依存している。
私たちのフレームワークであるThe Budget AI Researcherは、検索強化ジェネレーションチェーン、ベクトルデータベース、トピック誘導ペアリングを使用して、数百の機械学習論文の概念を再結合します。
このシステムは、機械学習の広大なサブフィールドにまたがる9つの主要なAIカンファレンスから論文を取り込み、それらを階層的なトピックツリーに整理する。
論文 参考訳(メタデータ) (2025-06-14T02:40:35Z) - WebThinker: Empowering Large Reasoning Models with Deep Research Capability [60.81964498221952]
WebThinkerは、大規模な推論モデルに、Webを自律的に検索し、Webページをナビゲートし、推論プロセス中に研究レポートをドラフトする権限を与えるディープリサーチエージェントである。
また、textbf Autonomous Think-Search-and-Draft戦略を採用しており、モデルがシームレスに推論、情報収集、レポート作成をリアルタイムで行うことができる。
我々のアプローチは複雑なシナリオにおけるLEMの信頼性と適用性を高め、より有能で多目的な深層研究システムへの道を開く。
論文 参考訳(メタデータ) (2025-04-30T16:25:25Z) - Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
多くの新しいAIモデルとツールが提案され、世界中の研究者や学者が研究をより効果的かつ効率的に実施できるようにすることを約束している。
これらのツールの欠点と誤用の可能性に関する倫理的懸念は、議論の中で特に顕著な位置を占める。
論文 参考訳(メタデータ) (2025-02-07T18:26:45Z) - Survey on Vision-Language-Action Models [0.2636873872510828]
この研究は、オリジナルの研究を表現していないが、AIが文学レビューの自動化にどのように役立つかを強調している。
今後の研究は、AI支援文学レビューのための構造化されたフレームワークの開発に焦点を当てる。
論文 参考訳(メタデータ) (2025-02-07T11:56:46Z) - SciPIP: An LLM-based Scientific Paper Idea Proposer [30.670219064905677]
SciPIPは,文献検索とアイデア生成の両面での改善を通じて,科学的アイデアの提案を強化するために設計された,革新的なフレームワークである。
自然言語処理やコンピュータビジョンなど,さまざまな領域で実施した実験では,SciPIPが革新的で有用なアイデアを多数生成する能力を示した。
論文 参考訳(メタデータ) (2024-10-30T16:18:22Z) - Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
科学文献の急激な増加は、研究者が最近の進歩と意義ある研究方向を見極めるのを困難にしている。
大規模言語モデル(LLM)の最近の発展は、新しい研究のアイデアを自動生成するための有望な道のりを示唆している。
本研究では, チェーン構造に関連文献を整理し, 研究領域の進展を効果的に反映する, LLMベースのエージェントであるChain-of-Ideas(CoI)エージェントを提案する。
論文 参考訳(メタデータ) (2024-10-17T03:26:37Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、新しい作品のアイデアと運用のためのAIベースのシステムである。
ResearchAgentは、新しい問題を自動で定義し、手法と設計実験を提案し、繰り返し修正する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - A Reliable Knowledge Processing Framework for Combustion Science using
Foundation Models [0.0]
この研究は、多様な燃焼研究データを処理し、実験研究、シミュレーション、文献にまたがるアプローチを導入している。
開発されたアプローチは、データのプライバシと精度を最適化しながら、計算と経済の費用を最小化する。
このフレームワークは、最小限の人間の監視で、常に正確なドメイン固有の応答を提供する。
論文 参考訳(メタデータ) (2023-12-31T17:15:25Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
我々は、古典的なキーワード検索とニューラル検索を組み合わせた新しいプラットフォームであるAI Research Navigatorを導入し、関連する文献を発見し整理する。
本稿では,システム全体のアーキテクチャの概要と,文書分析,質問応答,検索,分析,専門家検索,レコメンデーションの構成要素について概説する。
論文 参考訳(メタデータ) (2020-10-30T19:12:25Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
本稿では、自然言語処理と機械学習を利用して研究論文から実体や関係を抽出する新しいアーキテクチャを提案する。
本研究では,現在最先端の自然言語処理ツールとテキストマイニングツールを用いて,知識抽出の課題に取り組む。
セマンティックWebドメイン内の論文26,827件から抽出した109,105件のトリプルを含む科学知識グラフを作成した。
論文 参考訳(メタデータ) (2020-10-28T08:31:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。