LiSu: A Dataset and Method for LiDAR Surface Normal Estimation
- URL: http://arxiv.org/abs/2503.08601v1
- Date: Tue, 11 Mar 2025 16:35:22 GMT
- Title: LiSu: A Dataset and Method for LiDAR Surface Normal Estimation
- Authors: Dušan Malić, Christian Fruhwirth-Reisinger, Samuel Schulter, Horst Possegger,
- Abstract summary: We present LiSu, the first large-scale, synthetic LiDAR point cloud dataset with ground truth surface normal annotations.<n>We also propose a novel annotated method that exploits the temporal characteristics of autonomous driving data to enhance surface normal estimation accuracy.<n>We demonstrate the effectiveness of our method on LiSu, achieving state-of-the-art performance in LiDAR surface normal estimation.
- Score: 12.282805218676208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While surface normals are widely used to analyse 3D scene geometry, surface normal estimation from LiDAR point clouds remains severely underexplored. This is caused by the lack of large-scale annotated datasets on the one hand, and lack of methods that can robustly handle the sparse and often noisy LiDAR data in a reasonable time on the other hand. We address these limitations using a traffic simulation engine and present LiSu, the first large-scale, synthetic LiDAR point cloud dataset with ground truth surface normal annotations, eliminating the need for tedious manual labeling. Additionally, we propose a novel method that exploits the spatiotemporal characteristics of autonomous driving data to enhance surface normal estimation accuracy. By incorporating two regularization terms, we enforce spatial consistency among neighboring points and temporal smoothness across consecutive LiDAR frames. These regularizers are particularly effective in self-training settings, where they mitigate the impact of noisy pseudo-labels, enabling robust real-world deployment. We demonstrate the effectiveness of our method on LiSu, achieving state-of-the-art performance in LiDAR surface normal estimation. Moreover, we showcase its full potential in addressing the challenging task of synthetic-to-real domain adaptation, leading to improved neural surface reconstruction on real-world data.
Related papers
- LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
LiDAR simulation plays a crucial role in closed-loop simulation for autonomous driving.
We present LiDAR-GS, the first LiDAR Gaussian Splatting method, for real-time high-fidelity re-simulation of LiDAR sensor scans in public urban road scenes.
Our approach succeeds in simultaneously re-simulating depth, intensity, and ray-drop channels, achieving state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets.
arXiv Detail & Related papers (2024-10-07T15:07:56Z) - RaNeuS: Ray-adaptive Neural Surface Reconstruction [87.20343320266215]
We leverage a differentiable radiance field eg NeRF to reconstruct detailed 3D surfaces in addition to producing novel view renderings.
Considering that different methods formulate and optimize the projection from SDF to radiance field with a globally constant Eikonal regularization, we improve with a ray-wise weighting factor.
Our proposed textitRaNeuS are extensively evaluated on both synthetic and real datasets.
arXiv Detail & Related papers (2024-06-14T07:54:25Z) - PSS-BA: LiDAR Bundle Adjustment with Progressive Spatial Smoothing [27.060381833488172]
This paper presents a LiDAR bundle adjustment with progressive spatial smoothing.
The effectiveness and robustness of our proposed approach have been validated on both simulation and real-world datasets.
arXiv Detail & Related papers (2024-03-10T07:56:54Z) - LiDAR-NeRF: Novel LiDAR View Synthesis via Neural Radiance Fields [112.62936571539232]
We introduce a new task, novel view synthesis for LiDAR sensors.
Traditional model-based LiDAR simulators with style-transfer neural networks can be applied to render novel views.
We use a neural radiance field (NeRF) to facilitate the joint learning of geometry and the attributes of 3D points.
arXiv Detail & Related papers (2023-04-20T15:44:37Z) - NeRF-LOAM: Neural Implicit Representation for Large-Scale Incremental
LiDAR Odometry and Mapping [14.433784957457632]
We propose a novel NeRF-based LiDAR odometry and mapping approach, NeRF-LOAM, consisting of three modules neural odometry, neural mapping, and mesh reconstruction.
Our approach achieves state-of-the-art odometry and mapping performance, as well as a strong generalization in large-scale environments utilizing LiDAR data.
arXiv Detail & Related papers (2023-03-19T16:40:36Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - Fast and Robust Ground Surface Estimation from LIDAR Measurements using
Uniform B-Splines [3.337790639927531]
We propose a fast and robust method to estimate the ground surface from LIDAR measurements on an automated vehicle.
We model the estimation process as a robust LS optimization problem which can be reformulated as a linear problem.
We validate the approach on our research vehicle in real-world scenarios.
arXiv Detail & Related papers (2022-03-02T15:26:51Z) - Real-time Multi-Adaptive-Resolution-Surfel 6D LiDAR Odometry using
Continuous-time Trajectory Optimization [33.67478846305404]
We propose a real-time method for 6D LiDAR odometry.
Our approach combines a continuous-time B-Spline trajectory representation with a Gaussian Mixture Model (GMM) formulation to jointly align local multi-resolution surfel maps.
A thorough experimental evaluation shows the performance of our approach on two datasets and during real-robot experiments.
arXiv Detail & Related papers (2021-05-05T12:14:39Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
We propose a self-supervised LiDAR odometry method, dubbed SelfVoxeLO, to tackle these two difficulties.
Specifically, we propose a 3D convolution network to process the raw LiDAR data directly, which extracts features that better encode the 3D geometric patterns.
We evaluate our method's performances on two large-scale datasets, i.e., KITTI and Apollo-SouthBay.
arXiv Detail & Related papers (2020-10-19T09:23:39Z) - ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework
for LiDAR Point Cloud Segmentation [111.56730703473411]
Training deep neural networks (DNNs) on LiDAR data requires large-scale point-wise annotations.
Simulation-to-real domain adaptation (SRDA) trains a DNN using unlimited synthetic data with automatically generated labels.
ePointDA consists of three modules: self-supervised dropout noise rendering, statistics-invariant and spatially-adaptive feature alignment, and transferable segmentation learning.
arXiv Detail & Related papers (2020-09-07T23:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.