PSS-BA: LiDAR Bundle Adjustment with Progressive Spatial Smoothing
- URL: http://arxiv.org/abs/2403.06124v2
- Date: Mon, 23 Sep 2024 07:43:17 GMT
- Title: PSS-BA: LiDAR Bundle Adjustment with Progressive Spatial Smoothing
- Authors: Jianping Li, Thien-Minh Nguyen, Shenghai Yuan, Lihua Xie,
- Abstract summary: This paper presents a LiDAR bundle adjustment with progressive spatial smoothing.
The effectiveness and robustness of our proposed approach have been validated on both simulation and real-world datasets.
- Score: 27.060381833488172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and consistent construction of point clouds from LiDAR scanning data is fundamental for 3D modeling applications. Current solutions, such as multiview point cloud registration and LiDAR bundle adjustment, predominantly depend on the local plane assumption, which may be inadequate in complex environments lacking of planar geometries or substantial initial pose errors. To mitigate this problem, this paper presents a LiDAR bundle adjustment with progressive spatial smoothing, which is suitable for complex environments and exhibits improved convergence capabilities. The proposed method consists of a spatial smoothing module and a pose adjustment module, which combines the benefits of local consistency and global accuracy. With the spatial smoothing module, we can obtain robust and rich surface constraints employing smoothing kernels across various scales. Then the pose adjustment module corrects all poses utilizing the novel surface constraints. Ultimately, the proposed method simultaneously achieves fine poses and parametric surfaces that can be directly employed for high-quality point cloud reconstruction. The effectiveness and robustness of our proposed approach have been validated on both simulation and real-world datasets. The experimental results demonstrate that the proposed method outperforms the existing methods and achieves better accuracy in complex environments with low planar structures.
Related papers
- Galibr: Targetless LiDAR-Camera Extrinsic Calibration Method via Ground Plane Initialization [13.409482818102878]
Galibr is a fully automatic LiDAR-camera extrinsic calibration tool designed for ground vehicle platforms in any natural setting.
The method utilizes the ground planes and edge information from both LiDAR and camera inputs, streamlining the calibration process.
Our approach significantly enhances calibration performance, primarily attributed to our novel initial pose estimation method.
arXiv Detail & Related papers (2024-06-14T08:25:10Z) - RaNeuS: Ray-adaptive Neural Surface Reconstruction [87.20343320266215]
We leverage a differentiable radiance field eg NeRF to reconstruct detailed 3D surfaces in addition to producing novel view renderings.
Considering that different methods formulate and optimize the projection from SDF to radiance field with a globally constant Eikonal regularization, we improve with a ray-wise weighting factor.
Our proposed textitRaNeuS are extensively evaluated on both synthetic and real datasets.
arXiv Detail & Related papers (2024-06-14T07:54:25Z) - Non-rigid Structure-from-Motion: Temporally-smooth Procrustean Alignment and Spatially-variant Deformation Modeling [34.606331252248886]
Non-rigid Structure-from-Motion (NRSfM) has been extensively studied and great progress has been made.
There are still key challenges that hinder their broad real-world applications.
This paper proposes to resolve the above issues from a spatial-temporal modeling perspective.
arXiv Detail & Related papers (2024-05-07T13:33:50Z) - SIGMA: Scale-Invariant Global Sparse Shape Matching [50.385414715675076]
We propose a novel mixed-integer programming (MIP) formulation for generating precise sparse correspondences for non-rigid shapes.
We show state-of-the-art results for sparse non-rigid matching on several challenging 3D datasets.
arXiv Detail & Related papers (2023-08-16T14:25:30Z) - HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper
Surfaces [54.77683371400133]
We propose a novel normal estimation method called HSurf-Net, which can accurately predict normals from point clouds with noise and density variations.
Experimental results show that our HSurf-Net achieves the state-of-the-art performance on the synthetic shape dataset.
arXiv Detail & Related papers (2022-10-13T16:39:53Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
We derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups.
We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment.
arXiv Detail & Related papers (2022-02-01T21:21:56Z) - LiDAR Point--to--point Correspondences for Rigorous Registration of
Kinematic Scanning in Dynamic Networks [0.0]
We propose a novel trajectory adjustment procedure to improve the registration of LiDAR point clouds.
We describe the method for selecting correspondences and how they are inserted into the Dynamic Network as new observation models.
We then describe the experiments conducted to evaluate the performance of the proposed framework in practical airborne laser scanning scenarios with low-cost MEMS inertial sensors.
arXiv Detail & Related papers (2022-01-03T11:53:55Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z) - Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless
Approach [32.15405927679048]
We propose a targetless and structureless camera-DAR calibration method.
Our method combines a closed-form solution with a structureless bundle where the coarse-to-fine approach does not require an initial adjustment on the temporal parameters.
We demonstrate the accuracy and robustness of the proposed method through both simulation and real data experiments.
arXiv Detail & Related papers (2020-01-17T07:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.