Interplay of entanglement structures and stabilizer entropy in spin models
- URL: http://arxiv.org/abs/2503.08620v1
- Date: Tue, 11 Mar 2025 17:01:00 GMT
- Title: Interplay of entanglement structures and stabilizer entropy in spin models
- Authors: Michele Viscardi, Marcello Dalmonte, Alioscia Hamma, Emanuele Tirrito,
- Abstract summary: We show how entanglement structure and nonstabilizerness serve as distinctive signatures of quantum phases.<n>Our findings reveal entanglement spectral properties and magic-based measures serve as intertwined, robust indicators of quantum phase transitions.
- Score: 0.2999888908665658
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the interplay between nonstabilizerness and entanglement is crucial for uncovering the fundamental origins of quantum complexity. Recent studies have proposed entanglement spectral quantities, such as antiflatness of the entanglement spectrum and entanglement capacity, as effective complexity measures, establishing direct connections to stabilizer R\'enyi entropies. In this work, we systematically investigate quantum complexity across a diverse range of spin models, analyzing how entanglement structure and nonstabilizerness serve as distinctive signatures of quantum phases. By studying entanglement spectra and stabilizer entropy measures, we demonstrate that these quantities consistently differentiate between distinct phases of matter. Specifically, we provide a detailed analysis of spin chains including the XXZ model, the transverse-field XY model, its extension with Dzyaloshinskii-Moriya interactions, as well as the Cluster Ising and Cluster XY models. Our findings reveal that entanglement spectral properties and magic-based measures serve as intertwined, robust indicators of quantum phase transitions, highlighting their significance in characterizing quantum complexity in many-body systems.
Related papers
- Avoided-crossings, degeneracies and Berry phases in the spectrum of quantum noise through analytic Bloch-Messiah decomposition [49.1574468325115]
"analytic Bloch-Messiah decomposition" provides approach for characterizing dynamics of quantum optical systems.
We show that avoided crossings arise naturally when a single parameter is varied, leading to hypersensitivity of the singular vectors.
We highlight the possibility of programming the spectral response of photonic systems through the deliberate design of avoided crossings.
arXiv Detail & Related papers (2025-04-29T13:14:15Z) - Magic dynamics in many-body localized systems [0.0]
Nonstabilizerness, also known as quantum magic, characterizes the beyond-Clifford operations needed to prepare a quantum state.<n>This work investigates how nonstabilizerness spreads under the dynamics of disordered quantum many-body systems.
arXiv Detail & Related papers (2025-03-10T15:46:49Z) - Probing Entanglement Scaling Across a Quantum Phase Transition on a Quantum Computer [2.856143504551289]
Investigation of strongly-correlated quantum matter is difficult due to dimensionality and intricate entanglement structures.
We implement a holographic scheme for subsystem tomography on a fully-connected trapped-ion quantum computer.
For the first time, we demonstrate log-law scaling of subsystem entanglement entropies at criticality.
arXiv Detail & Related papers (2024-12-24T18:56:44Z) - Many-body spectral transitions through the lens of variable-range SYK2 model [13.39567116041819]
We investigate a quadratic SYK model with distance-dependent interactions governed by a power-law decay.<n>By analytically and numerically studying the spectral form factor (SFF), we uncover how the single particle transitions manifest in the many-body system.<n>Our results highlight the interplay between single-particle criticality and many-body dynamics, offering new insights into the quantum chaos-to-localization transition and its reflection in spectral statistics.
arXiv Detail & Related papers (2024-12-18T19:17:20Z) - Quantum thermalization and Floquet engineering in a spin ensemble with a clock transition [3.55103790558995]
We study an optically addressable solid-state spin system comprising a strongly interacting ensemble of millions of ytterbium-171 ions in a crystal.
Our findings indicate that an ensemble of rare-earth ions serves as a versatile testbed for many-body physics and offers valuable insights for advancing quantum technologies.
arXiv Detail & Related papers (2024-08-01T03:16:25Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Entanglement spectrum and quantum phase diagram of the long-range XXZ
chain [0.0]
We investigate the entanglement spectrum of the long-range XXZ model.
We show that within the critical phase it exhibits a remarkable self-similarity.
Our results pave the way to further studies of entanglement properties in long-range quantum models.
arXiv Detail & Related papers (2022-02-27T11:39:01Z) - Directly Revealing Entanglement Dynamics through Quantum Correlation
Transfer Functions with Resultant Demonstration of the Mechanism of Many-Body
Localization [0.0]
This paper introduces the Quantum Correlation Transfer Function (QCTF) approach to entanglement dynamics in many-body quantum systems.
We show that QCTF can be fully characterized directly from the system's Hamiltonian, which circumvents the bottleneck of calculating the many-body system's time-evolution.
We also show that QCTF provides a new foundation to study the Eigenstate Thermalization Hypothesis (ETH)
arXiv Detail & Related papers (2022-01-26T22:50:04Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.