Source-free domain adaptation based on label reliability for cross-domain bearing fault diagnosis
- URL: http://arxiv.org/abs/2503.08749v1
- Date: Tue, 11 Mar 2025 13:02:18 GMT
- Title: Source-free domain adaptation based on label reliability for cross-domain bearing fault diagnosis
- Authors: Wenyi Wu, Hao Zhang, Zhisen Wei, Xiao-Yuan Jing, Qinghua Zhang, Songsong Wu,
- Abstract summary: Source-free domain adaptation (SFDA) has been exploited for cross-domain bearing fault diagnosis without access to source data.<n>We propose a novel SFDA-based approach for bearing fault diagnosis that exploits both reliable and unreliable pseudo-labels.<n>Our approach achieves significant performance improvements against existing SFDA-based bearing fault diagnosis methods.
- Score: 11.377646664126644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Source-free domain adaptation (SFDA) has been exploited for cross-domain bearing fault diagnosis without access to source data. Current methods select partial target samples with reliable pseudo-labels for model adaptation, which is sub-optimal due to the ignored target samples. We argue that every target sample can contribute to model adaptation, and accordingly propose in this paper a novel SFDA-based approach for bearing fault diagnosis that exploits both reliable and unreliable pseudo-labels. We develop a data-augmentation-based label voting strategy to divide the target samples into reliable and unreliable ones. We propose to explore the underlying relation between feature space and label space by using the reliable pseudo-labels as ground-truth labels, meanwhile, alleviating negative transfer by maximizing the entropy of the unreliable pseudo-labels. The proposed method achieves well-balance between discriminability and diversity by taking advantage of reliable and unreliable pseudo-labels. Extensive experiments are conducted on two bearing fault benchmarks, demonstrating that our approach achieves significant performance improvements against existing SFDA-based bearing fault diagnosis methods. Our code is available at https://github.com/BdLab405/SDALR.
Related papers
- Analysis of Pseudo-Labeling for Online Source-Free Universal Domain Adaptation [3.1265626879839923]
A shift between training and test data often hinders the real-world performance of deep neural networks.
Online source-free universal domain adaptation (SF-UniDA) addresses this challenge.
Existing methods mainly rely on self-training with pseudo-labels, yet the relationship between pseudo-labeling and adaptation outcomes has not been studied yet.
arXiv Detail & Related papers (2025-04-16T11:34:18Z) - Label Calibration in Source Free Domain Adaptation [1.2437039433843042]
We propose to introduce predictive uncertainty and softmax calibration for pseudolabel refinement using evidential deep learning.<n>We incorporate a combination of evidential deep learning loss and information loss with calibrated softmax in both prior and non-prior target knowledge SFDA settings.
arXiv Detail & Related papers (2025-01-13T05:57:09Z) - Unsupervised Accuracy Estimation of Deep Visual Models using
Domain-Adaptive Adversarial Perturbation without Source Samples [1.1852406625172216]
We propose a new framework to estimate model accuracy on unlabeled target data without access to source data.
Our approach measures the disagreement rate between the source hypothesis and the target pseudo-labeling function.
Our proposed source-free framework effectively addresses the challenging distribution shift scenarios and outperforms existing methods requiring source data and labels for training.
arXiv Detail & Related papers (2023-07-19T15:33:11Z) - Refined Pseudo labeling for Source-free Domain Adaptive Object Detection [9.705172026751294]
Source-freeD is proposed to adapt source-trained detectors to target domains with only unlabeled target data.
Existing source-freeD methods typically utilize pseudo labeling, where the performance heavily relies on the selection of confidence threshold.
We present a category-aware adaptive threshold estimation module, which adaptively provides the appropriate threshold for each category.
arXiv Detail & Related papers (2023-03-07T08:31:42Z) - Learning Unbiased Transferability for Domain Adaptation by Uncertainty
Modeling [107.24387363079629]
Domain adaptation aims to transfer knowledge from a labeled source domain to an unlabeled or a less labeled but related target domain.
Due to the imbalance between the amount of annotated data in the source and target domains, only the target distribution is aligned to the source domain.
We propose a non-intrusive Unbiased Transferability Estimation Plug-in (UTEP) by modeling the uncertainty of a discriminator in adversarial-based DA methods to optimize unbiased transfer.
arXiv Detail & Related papers (2022-06-02T21:58:54Z) - Delving into Probabilistic Uncertainty for Unsupervised Domain Adaptive
Person Re-Identification [54.174146346387204]
We propose an approach named probabilistic uncertainty guided progressive label refinery (P$2$LR) for domain adaptive person re-identification.
A quantitative criterion is established to measure the uncertainty of pseudo labels and facilitate the network training.
Our method outperforms the baseline by 6.5% mAP on the Duke2Market task, while surpassing the state-of-the-art method by 2.5% mAP on the Market2MSMT task.
arXiv Detail & Related papers (2021-12-28T07:40:12Z) - Source-Free Domain Adaptive Fundus Image Segmentation with Denoised
Pseudo-Labeling [56.98020855107174]
Domain adaptation typically requires to access source domain data to utilize their distribution information for domain alignment with the target data.
In many real-world scenarios, the source data may not be accessible during the model adaptation in the target domain due to privacy issue.
We present a novel denoised pseudo-labeling method for this problem, which effectively makes use of the source model and unlabeled target data.
arXiv Detail & Related papers (2021-09-19T06:38:21Z) - Adaptive Pseudo-Label Refinement by Negative Ensemble Learning for
Source-Free Unsupervised Domain Adaptation [35.728603077621564]
Existing Unsupervised Domain Adaptation (UDA) methods presumes source and target domain data to be simultaneously available during training.
A pre-trained source model is always considered to be available, even though performing poorly on target due to the well-known domain shift problem.
We propose a unified method to tackle adaptive noise filtering and pseudo-label refinement.
arXiv Detail & Related papers (2021-03-29T22:18:34Z) - Unsupervised Robust Domain Adaptation without Source Data [75.85602424699447]
We study the problem of robust domain adaptation in the context of unavailable target labels and source data.
We show a consistent performance improvement of over $10%$ in accuracy against the tested baselines on four benchmark datasets.
arXiv Detail & Related papers (2021-03-26T16:42:28Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z) - A Free Lunch for Unsupervised Domain Adaptive Object Detection without
Source Data [69.091485888121]
Unsupervised domain adaptation assumes that source and target domain data are freely available and usually trained together to reduce the domain gap.
We propose a source data-free domain adaptive object detection (SFOD) framework via modeling it into a problem of learning with noisy labels.
arXiv Detail & Related papers (2020-12-10T01:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.