Neurosymbolic Decision Trees
- URL: http://arxiv.org/abs/2503.08762v1
- Date: Tue, 11 Mar 2025 16:40:38 GMT
- Title: Neurosymbolic Decision Trees
- Authors: Matthias Möller, Arvid Norlander, Pedro Zuidberg Dos Martires, Luc De Raedt,
- Abstract summary: We introduce neurosymbolic decision trees (NDTs) as an extension of decision trees together with a novel NeSy structure learning algorithm, which we dub NeuID3.<n>NeuID3 adapts the standard top-down induction of decision tree algorithms and combines it with a neural probabilistic logic representation.<n>We demonstrate the benefits of NeSys structure learning over more traditonal approaches such as purely data-driven learning with neural networks.
- Score: 10.199462357139282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neurosymbolic (NeSy) AI studies the integration of neural networks (NNs) and symbolic reasoning based on logic. Usually, NeSy techniques focus on learning the neural, probabilistic and/or fuzzy parameters of NeSy models. Learning the symbolic or logical structure of such models has, so far, received less attention. We introduce neurosymbolic decision trees (NDTs), as an extension of decision trees together with a novel NeSy structure learning algorithm, which we dub NeuID3. NeuID3 adapts the standard top-down induction of decision tree algorithms and combines it with a neural probabilistic logic representation, inherited from the DeepProbLog family of models. The key advantage of learning NDTs with NeuID3 is the support of both symbolic and subsymbolic data (such as images), and that they can exploit background knowledge during the induction of the tree structure, In our experimental evaluation we demonstrate the benefits of NeSys structure learning over more traditonal approaches such as purely data-driven learning with neural networks.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - A Complexity Map of Probabilistic Reasoning for Neurosymbolic Classification Techniques [6.775534755081169]
We develop a unified formalism for four probabilistic reasoning problems.<n>Then, we compile several known and new tractability results into a single complexity map of probabilistic reasoning.<n>We build on this complexity map to characterize the domains of scalability of several techniques.
arXiv Detail & Related papers (2024-04-12T11:31:37Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
A potential solution to this issue is Neuro-Symbolic Integration (NeSy), where neural approaches are combined with symbolic reasoning.
Most of these methods exploit a neural network to map perceptions to symbols and a logical reasoner to predict the output of the downstream task.
They suffer from several issues, including slow convergence, learning difficulties with complex perception tasks, and convergence to local minima.
This paper proposes a simple yet effective method to ameliorate these problems.
arXiv Detail & Related papers (2024-02-21T15:51:01Z) - Extensions to Generalized Annotated Logic and an Equivalent Neural
Architecture [4.855957436171202]
We propose a list of desirable criteria for neuro symbolic systems and examine how some of the existing approaches address these criteria.
We then propose an extension to annotated generalized logic that allows for the creation of an equivalent neural architecture.
Unlike previous approaches that rely on continuous optimization for the training process, our framework is designed as a binarized neural network that uses discrete optimization.
arXiv Detail & Related papers (2023-02-23T17:39:46Z) - Symbiosis of an artificial neural network and models of biological
neurons: training and testing [0.0]
We show the possibility of creating and identifying the features of an artificial neural network (ANN) which consists of mathematical models of biological neurons.
The FitzHugh--Nagumo (FHN) system is used as an example of model demonstrating simplified neuron activity.
arXiv Detail & Related papers (2023-02-03T10:06:54Z) - A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic
Inference [11.393328084369783]
Recently introduced frameworks for Probabilistic Neurosymbolic Learning (PNL), such as DeepProbLog, perform exponential-time exact inference.
We introduce Approximate Neurosymbolic Inference (A-NeSI), a new framework for PNL that uses scalable neural networks for approximate inference.
arXiv Detail & Related papers (2022-12-23T15:24:53Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Towards Data-and Knowledge-Driven Artificial Intelligence: A Survey on Neuro-Symbolic Computing [73.0977635031713]
Neural-symbolic computing (NeSy) has been an active research area of Artificial Intelligence (AI) for many years.
NeSy shows promise of reconciling the advantages of reasoning and interpretability of symbolic representation and robust learning in neural networks.
arXiv Detail & Related papers (2022-10-28T04:38:10Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
We focus on a specific method, KENN, a Neural-Symbolic architecture that injects prior logical knowledge into a neural network.
In this paper, we propose an extension of KENN for relational data.
arXiv Detail & Related papers (2022-05-31T13:00:34Z) - NeuPSL: Neural Probabilistic Soft Logic [19.47714497494585]
We introduce a novel neuro-symbolic (NeSy) framework that unites state-of-the-art symbolic reasoning with the low-level perception of deep neural networks.
We show how to seamlessly integrate neural and symbolic parameter learning and inference in NeuPSL.
On a well-established NeSy task, MNIST-Addition, NeuPSL demonstrates its joint reasoning capabilities by outperforming existing NeSy approaches by up to 10% in low-data settings.
arXiv Detail & Related papers (2022-05-27T23:06:52Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - Neural-Symbolic Integration for Interactive Learning and Conceptual
Grounding [1.14219428942199]
We propose neural-symbolic integration for abstract concept explanation and interactive learning.
Interaction with the user confirms or rejects a revision of the neural model.
The approach is illustrated using the Logic Network framework alongside Concept Activation Vectors and applied to a Conal Neural Network.
arXiv Detail & Related papers (2021-12-22T11:24:48Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
We propose an extension of KENN for relational data.
The results show that KENN is capable of increasing the performances of the underlying neural network even in the presence relational data.
arXiv Detail & Related papers (2020-09-13T21:12:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.