Quantum Averaging for High-Fidelity Quantum Logic Gates
- URL: http://arxiv.org/abs/2503.08886v2
- Date: Thu, 13 Mar 2025 02:18:12 GMT
- Title: Quantum Averaging for High-Fidelity Quantum Logic Gates
- Authors: Kristian D. Barajas, Wesley C. Campbell,
- Abstract summary: We present a two-timescale quantum averaging theory (QAT) for analytically modeling unitary dynamics in driven quantum systems.<n>We demonstrate the high precision achievable by applying this analytic technique to model a high-fidelity two-qubit quantum gate.<n>The results rapidly converge with numerical calculations of a fast-entangling Molmer-Sorensen trapped-ion-qubit gate.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a two-timescale quantum averaging theory (QAT) for analytically modeling unitary dynamics in driven quantum systems. Combining the unitarity-preserving Magnus expansion with the method of averaging on multiple scales, QAT addresses the simultaneous presence of distinct timescales by generating a rotating frame with a dynamical phase operator that toggles with the high-frequency dynamics and yields an effective Hamiltonian for the slow degree of freedom. By retaining the fast-varying effects, we demonstrate the high precision achievable by applying this analytic technique to model a high-fidelity two-qubit quantum gate beyond the validity of first-order approximations. The results rapidly converge with numerical calculations of a fast-entangling M{\o}lmer-S{\o}rensen trapped-ion-qubit gate in the strong-field regime, illustrating QAT's ability to simultaneously provide both an intuitive, effective-Hamiltonian model and high accuracy.
Related papers
- Multi-Timescale Quantum Averaging Theory for Driven Quantum Systems [0.0]
We present a multi-timescale Quantum Averaging Theory (QAT) for modeling periodically and almost-periodically driven quantum systems.
By integrating the Magnus expansion with the method of averaging on multiple scales, QAT captures the effects of both far-detuned and near-resonant interactions on system dynamics.
arXiv Detail & Related papers (2025-03-12T19:00:24Z) - Many-body dynamics with explicitly time-dependent neural quantum states [0.0]
We introduce the time-dependent neural quantum state (t-NQS)<n>We optimize a single, time-independent set of parameters to solve the time-dependent Schr"odinger equation across an entire time interval.<n>Results establish t-NQS as a powerful framework for exploring quantum dynamics in strongly correlated systems.
arXiv Detail & Related papers (2024-12-16T14:53:26Z) - Time-dependent Neural Galerkin Method for Quantum Dynamics [42.81677042059531]
We introduce a classical computational method for quantum dynamics that relies on a global-in-time variational principle.<n>We showcase the method's effectiveness simulating global quantum quenches in the paradigmatic Transverse-Field Ising model in both 1D and 2D.<n>Overall, the method presented here shows competitive performance compared to state-of-the-art time-dependent variational approaches.
arXiv Detail & Related papers (2024-12-16T13:48:54Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Effective Description of the Quantum Damped Harmonic Oscillator:
Revisiting the Bateman Dual System [0.3495246564946556]
We present a quantization scheme for the damped harmonic oscillator (QDHO) using a framework known as momentous quantum mechanics.
The significance of our study lies in its potential to serve as a foundational basis for the effective description of open quantum systems.
arXiv Detail & Related papers (2023-09-06T03:53:09Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics and
Superconvergence for Schr\"odinger Equation [2.973326951020451]
We propose a simple quantum algorithm for simulating highly oscillatory quantum dynamics.
To our knowledge, this is the first quantum algorithm that is both insensitive to the rapid changes of the time-dependent Hamiltonian and exhibits commutator scaling.
For the simulation of the Schr"odinger equation, our method exhibits superconvergence and achieves a surprising second order convergence rate.
arXiv Detail & Related papers (2021-11-04T18:50:36Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum-classical distance as a tool to design optimal chiral quantum
walk [0.0]
Continuous-time quantum walks (CTQWs) provide a valuable model for quantum transport, universal quantum computation and quantum spatial search.
We argue that the quantum-classical distance, a figure of merit introduced to capture the difference in dynamics between a CTQW and its classical counterpart, guides the optimization of parameters of the Hamiltonian.
arXiv Detail & Related papers (2021-06-22T11:38:58Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Adaptive Variational Quantum Dynamics Simulations [3.629716738568079]
We propose a general-purpose, self-adaptive approach to construct variational wavefunction ans"atze for highly accurate quantum dynamics simulations.
We apply this approach to the integrable Lieb-Schultz-Mattis spin chain and the nonintegrable mixed-field Ising model.
We envision that a wide range of dynamical simulations of quantum many-body systems on near-term quantum computing devices will be made possible through the AVQDS framework.
arXiv Detail & Related papers (2020-11-01T20:21:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.