論文の概要: HessianForge: Scalable LiDAR reconstruction with Physics-Informed Neural Representation and Smoothness Energy Constraints
- arxiv url: http://arxiv.org/abs/2503.08929v1
- Date: Tue, 11 Mar 2025 22:18:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:40:33.299948
- Title: HessianForge: Scalable LiDAR reconstruction with Physics-Informed Neural Representation and Smoothness Energy Constraints
- Title(参考訳): HessianForge: 物理インフォームドニューラル表現とスムーズエネルギー制約を用いたスケーラブルLiDAR再構成
- Authors: Hrishikesh Viswanath, Md Ashiqur Rahman, Chi Lin, Damon Conover, Aniket Bera,
- Abstract要約: 深層学習アプローチは、生のLiDAR点雲から符号付き距離場を学習する。
トポロジ的不整合とエッジ歪みの補正のためのテスト時間改善戦略
textttCUDAによる最小二乗最適化。
- 参考スコア(独自算出の注目度): 18.858320397002277
- License:
- Abstract: Accurate and efficient 3D mapping of large-scale outdoor environments from LiDAR measurements is a fundamental challenge in robotics, particularly towards ensuring smooth and artifact-free surface reconstructions. Although the state-of-the-art methods focus on memory-efficient neural representations for high-fidelity surface generation, they often fail to produce artifact-free manifolds, with artifacts arising due to noisy and sparse inputs. To address this issue, we frame surface mapping as a physics-informed energy optimization problem, enforcing surface smoothness by optimizing an energy functional that penalizes sharp surface ridges. Specifically, we propose a deep learning based approach that learns the signed distance field (SDF) of the surface manifold from raw LiDAR point clouds using a physics-informed loss function that optimizes the $L_2$-Hessian energy of the surface. Our learning framework includes a hierarchical octree based input feature encoding and a multi-scale neural network to iteratively refine the signed distance field at different scales of resolution. Lastly, we introduce a test-time refinement strategy to correct topological inconsistencies and edge distortions that can arise in the generated mesh. We propose a \texttt{CUDA}-accelerated least-squares optimization that locally adjusts vertex positions to enforce feature-preserving smoothing. We evaluate our approach on large-scale outdoor datasets and demonstrate that our approach outperforms current state-of-the-art methods in terms of improved accuracy and smoothness. Our code is available at \href{https://github.com/HrishikeshVish/HessianForge/}{https://github.com/HrishikeshVish/HessianForge/}
- Abstract(参考訳): LiDAR測定による大規模屋外環境の高精度かつ効率的な3Dマッピングは、特にスムーズでアーティファクトのない表面の再構築を確実にするために、ロボット工学の基本的な課題である。
最先端の手法は、高忠実な表面生成のためのメモリ効率のよいニューラル表現に重点を置いているが、ノイズやスパース入力によって生じるアーティファクトのない多様体の生成に失敗することが多い。
この問題に対処するため, 表面マッピングを物理インフォームドエネルギー最適化問題として, 鋭い表面隆起をペナル化するエネルギー汎関数を最適化することにより表面の滑らかさを高める。
具体的には,表面のL_2$-Hessエネルギーを最適化する物理インフォームド損失関数を用いて,表面多様体の符号付き距離場(SDF)を生のLiDAR点雲から学習する深層学習に基づくアプローチを提案する。
我々の学習フレームワークは、階層的なオクツリーベースの入力特徴符号化と、署名された距離フィールドを異なる解像度で反復的に洗練するマルチスケールニューラルネットワークを含む。
最後に、生成メッシュで発生するトポロジ的不整合とエッジ歪みを補正するテストタイム改善戦略を導入する。
本稿では, 頂点位置を局所的に調整し, 特徴保存スムース化を強制する最小二乗最適化を提案する。
大規模屋外データセットに対する我々のアプローチを評価し、我々のアプローチが精度と滑らか性の向上の観点から現在の最先端手法よりも優れていることを示す。
私たちのコードは \href{https://github.com/HrishikeshVish/HessianForge/}{https://github.com/HrishikeshVish/HessianForge/} で利用可能です。
関連論文リスト
- NASM: Neural Anisotropic Surface Meshing [38.8654207201197]
本稿では、異方性表面メッシュのための学習に基づく新しい手法NASMを提案する。
鍵となるアイデアは、入力メッシュを高次元ユークリッド埋め込み空間に埋め込み、曲率ベースの異方性計量を保存することである。
そこで,本研究では,新たに生成した高次元埋め込みにおける特徴感リメッシングを提案し,鮮明な幾何学的特徴を自動キャプチャする。
論文 参考訳(メタデータ) (2024-10-30T15:20:10Z) - SMORE: Simulataneous Map and Object REconstruction [66.66729715211642]
本稿では,LiDARから大規模都市景観を動的に再現する手法を提案する。
我々は、世界が厳格に動く物体と背景に分解される動的なシーンの構成モデルを総合的に捉え、最適化する。
論文 参考訳(メタデータ) (2024-06-19T23:53:31Z) - Flatten Anything: Unsupervised Neural Surface Parameterization [76.4422287292541]
本研究では,FAM(Flatten Anything Model)を導入し,グローバルな自由境界面パラメータ化を実現する。
従来の手法と比較して,FAMは接続情報を活用することなく,個別の面上で直接動作する。
当社のFAMは前処理を必要とせずに完全に自動化されており,高度に複雑なトポロジを扱うことができる。
論文 参考訳(メタデータ) (2024-05-23T14:39:52Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPointは、グローバルな自由境界面パラメータ化を実現するための教師なしのニューラルネットワークパイプラインである。
この研究は、グローバルマッピングと自由境界の両方を追求するニューラルポイントクラウドパラメータ化を調査する最初の試みである。
論文 参考訳(メタデータ) (2024-03-15T14:35:05Z) - NeuSurf: On-Surface Priors for Neural Surface Reconstruction from Sparse
Input Views [41.03837477483364]
本研究では,表面の高度に忠実な再構成を実現するために,地上の事前情報を活用する新しいスパース・ビュー・リコンストラクション・フレームワークを提案する。
具体的には,大域的幾何アライメントと局所的幾何洗練に関するいくつかの制約を設計し,粗い形状と細部を協調的に最適化する。
DTUとBlendedMVSデータセットによる2つの一般的なスパース設定の実験結果は、最先端の手法よりも大幅に改善されたことを示している。
論文 参考訳(メタデータ) (2023-12-21T16:04:45Z) - Flexible Isosurface Extraction for Gradient-Based Mesh Optimization [65.76362454554754]
本研究では、勾配に基づくメッシュ最適化について考察し、スカラー場の等曲面として表現することで、3次元表面メッシュを反復的に最適化する。
我々は、幾何学的、視覚的、あるいは物理的目的に対して未知のメッシュを最適化するために特別に設計された、異面表現であるFlexiCubesを紹介する。
論文 参考訳(メタデータ) (2023-08-10T06:40:19Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
画像からテクスチャ化された表面メッシュを生成する新しいフレームワークを提案する。
我々のアプローチは、NeRFを用いて幾何学とビュー依存の外観を効率的に初期化することから始まります。
ジオメトリと共同で外観を洗練し、テクスチャ画像に変換してリアルタイムレンダリングします。
論文 参考訳(メタデータ) (2023-03-03T17:14:44Z) - HR-NeuS: Recovering High-Frequency Surface Geometry via Neural Implicit
Surfaces [6.382138631957651]
我々は新しい暗黙表面再構成法であるHigh-Resolution NeuSを提案する。
HR-NeuSは大規模な再構成精度を維持しながら高周波表面形状を復元する。
我々は,DTUおよびBlendedMVSデータセットを用いた実験により,従来の手法と同等の精度で定性的に詳細かつ定量的な3次元測地を生成できることを実証した。
論文 参考訳(メタデータ) (2023-02-14T02:25:16Z) - Improved surface reconstruction using high-frequency details [44.73668037810989]
ニューラルレンダリングにおける表面再構成の品質向上のための新しい手法を提案する。
以上の結果から,本手法は高頻度表面の細部を再構築し,現状よりも優れた表面の再現性が得られることがわかった。
論文 参考訳(メタデータ) (2022-06-15T23:46:48Z) - {\phi}-SfT: Shape-from-Template with a Physics-Based Deformation Model [69.27632025495512]
Shape-from-Template (SfT) 法では、単一の単眼RGBカメラから3次元表面の変形を推定する。
本稿では,物理シミュレーションによる2次元観察を解説する新しいSfT手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T17:59:57Z) - Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid
Representations [21.64457003420851]
我々は,幾何認識によるサンプリングと正規化を課すことができるハイブリッドニューラルサーフェス表現を開発した。
本手法は、多視点画像や点群から神経暗黙面を再構築する技術を改善するために適用できることを実証する。
論文 参考訳(メタデータ) (2020-12-11T15:51:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。