ARCHED: A Human-Centered Framework for Transparent, Responsible, and Collaborative AI-Assisted Instructional Design
- URL: http://arxiv.org/abs/2503.08931v1
- Date: Tue, 11 Mar 2025 22:19:46 GMT
- Title: ARCHED: A Human-Centered Framework for Transparent, Responsible, and Collaborative AI-Assisted Instructional Design
- Authors: Hongming Li, Yizirui Fang, Shan Zhang, Seiyon M. Lee, Yiming Wang, Mark Trexler, Anthony F. Botelho,
- Abstract summary: ARCHED is a framework that ensures human educators remain central in the design process while leveraging AI capabilities.<n>The framework integrates specialized AI agents - one generating diverse pedagogical options and another evaluating alignment with learning objectives.<n> Empirical evaluations demonstrate that ARCHED enhances instructional design quality while preserving educator oversight, marking a step forward in responsible AI integration in education.
- Score: 10.99360129432492
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating Large Language Models (LLMs) in educational technology presents unprecedented opportunities to improve instructional design (ID), yet existing approaches often prioritize automation over pedagogical rigor and human agency. This paper introduces ARCHED (AI for Responsible, Collaborative, Human-centered Education Instructional Design), a structured multi-stage framework that ensures human educators remain central in the design process while leveraging AI capabilities. Unlike traditional AI-generated instructional materials that lack transparency, ARCHED employs a cascaded workflow aligned with Bloom's taxonomy. The framework integrates specialized AI agents - one generating diverse pedagogical options and another evaluating alignment with learning objectives - while maintaining educators as primary decision-makers. This approach addresses key limitations in current AI-assisted instructional design, ensuring transparency, pedagogical foundation, and meaningful human agency. Empirical evaluations demonstrate that ARCHED enhances instructional design quality while preserving educator oversight, marking a step forward in responsible AI integration in education.
Related papers
- Enhancing AI-Driven Education: Integrating Cognitive Frameworks, Linguistic Feedback Analysis, and Ethical Considerations for Improved Content Generation [0.0]
This paper synthesizes insights from four related studies to propose a comprehensive framework for enhancing AI-driven educational tools.
We integrate cognitive assessment frameworks, linguistic analysis of AI-generated feedback, and ethical design principles to guide the development of effective and responsible AI tools.
arXiv Detail & Related papers (2025-05-01T06:36:21Z) - Evolution of AI in Education: Agentic Workflows [2.1681971652284857]
Artificial intelligence (AI) has transformed various aspects of education.
Large language models (LLMs) are driving advancements in automated tutoring, assessment, and content generation.
To address these limitations and foster more sustainable technological practices, AI agents have emerged as a promising new avenue for educational innovation.
arXiv Detail & Related papers (2025-04-25T13:44:57Z) - Form-Substance Discrimination: Concept, Cognition, and Pedagogy [55.2480439325792]
This paper examines form-substance discrimination as an essential learning outcome for curriculum development in higher education.
We propose practical strategies for fostering this ability through curriculum design, assessment practices, and explicit instruction.
arXiv Detail & Related papers (2025-04-01T04:15:56Z) - LLM-powered Multi-agent Framework for Goal-oriented Learning in Intelligent Tutoring System [54.71619734800526]
GenMentor is a multi-agent framework designed to deliver goal-oriented, personalized learning within ITS.<n>It maps learners' goals to required skills using a fine-tuned LLM trained on a custom goal-to-skill dataset.<n>GenMentor tailors learning content with an exploration-drafting-integration mechanism to align with individual learner needs.
arXiv Detail & Related papers (2025-01-27T03:29:44Z) - Generative AI Literacy: Twelve Defining Competencies [48.90506360377104]
This paper introduces a competency-based model for generative artificial intelligence (AI) literacy covering essential skills and knowledge areas necessary to interact with generative AI.<n>The competencies range from foundational AI literacy to prompt engineering and programming skills, including ethical and legal considerations.<n>These twelve competencies offer a framework for individuals, policymakers, government officials, and educators looking to navigate and take advantage of the potential of generative AI responsibly.
arXiv Detail & Related papers (2024-11-29T14:55:15Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC (Massive AI-empowered Course) is a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom.
We conduct preliminary experiments at Tsinghua University, one of China's leading universities.
arXiv Detail & Related papers (2024-09-05T13:22:51Z) - Comprehensive AI Assessment Framework: Enhancing Educational Evaluation with Ethical AI Integration [0.0]
This paper presents the Comprehensive AI Assessment Framework (CAIAF), an evolved version of the AI Assessment Scale (AIAS) by Perkins, Furze, Roe, and MacVaugh.
The CAIAF incorporates stringent ethical guidelines, with clear distinctions based on educational levels, and advanced AI capabilities.
The framework will ensure better learning outcomes, uphold academic integrity, and promote responsible use of AI.
arXiv Detail & Related papers (2024-06-07T07:18:42Z) - Towards Educator-Driven Tutor Authoring: Generative AI Approaches for Creating Intelligent Tutor Interfaces [0.31873871499564926]
We introduce generative AI capabilities to assist educators in creating tutor interfaces.
Our approach leverages Large Language Models (LLMs) and prompt engineering to generate tutor layout and contents.
A small-scale comparison shows the potential of our approach to enhance the efficiency of tutor interface design.
arXiv Detail & Related papers (2024-05-23T15:46:10Z) - Enhancing Instructional Quality: Leveraging Computer-Assisted Textual
Analysis to Generate In-Depth Insights from Educational Artifacts [13.617709093240231]
We examine how artificial intelligence (AI) and machine learning (ML) methods can analyze educational content, teacher discourse, and student responses to foster instructional improvement.
We identify key areas where AI/ML integration offers significant advantages, including teacher coaching, student support, and content development.
This paper emphasizes the importance of aligning AI/ML technologies with pedagogical goals to realize their full potential in educational settings.
arXiv Detail & Related papers (2024-03-06T18:29:18Z) - White Paper: The Generative Education (GenEd) Framework [0.0]
The Generative Education (GenEd) Framework explores the transition from Large Language Models (LLMs) to Large Multimodal Models (LMMs) in education.
This paper delves into the potential of LMMs to create personalized, interactive, and emotionally-aware learning environments.
arXiv Detail & Related papers (2023-10-16T23:30:42Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
Intrinsic motivations have proven to generate a task-agnostic signal to properly allocate the training time amongst goals.
While the majority of works in the field of intrinsically motivated open-ended learning focus on scenarios where goals are independent from each other, only few of them studied the autonomous acquisition of interdependent tasks.
In particular, we first deepen the analysis of a previous system, showing the importance of incorporating information about the relationships between tasks at a higher level of the architecture.
Then we introduce H-GRAIL, a new system that extends the previous one by adding a new learning layer to store the autonomously acquired sequences
arXiv Detail & Related papers (2022-05-16T10:43:01Z) - A Transparency Index Framework for AI in Education [1.776308321589895]
The main contribution of this study is that it highlights the importance of transparency in developing AI-powered educational technologies.
We demonstrate how transparency enables the implementation of other ethical AI dimensions in Education like interpretability, accountability, and safety.
arXiv Detail & Related papers (2022-05-09T10:10:47Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.