論文の概要: Towards Quantifying Long-Range Interactions in Graph Machine Learning: a Large Graph Dataset and a Measurement
- arxiv url: http://arxiv.org/abs/2503.09008v1
- Date: Wed, 12 Mar 2025 02:51:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:40:00.205823
- Title: Towards Quantifying Long-Range Interactions in Graph Machine Learning: a Large Graph Dataset and a Measurement
- Title(参考訳): グラフ機械学習におけるLong-Rangeインタラクションの定量化:大規模グラフデータセットと測定
- Authors: Huidong Liang, Haitz Sáez de Ocáriz Borde, Baskaran Sripathmanathan, Michael Bronstein, Xiaowen Dong,
- Abstract要約: グラフ表現学習には長距離依存が不可欠である。
既存のデータセットのほとんどは、帰納的タスクに適した小さなグラフに焦点を当てており、長距離インタラクションに関する限られた洞察を提供する。
都市ネットワークワークス(City-Networks)は、現実世界の都市道路から派生した、新しい大規模トランスダクティブ学習データセットである。
- 参考スコア(独自算出の注目度): 10.124564216461858
- License:
- Abstract: Long-range dependencies are critical for effective graph representation learning, yet most existing datasets focus on small graphs tailored to inductive tasks, offering limited insight into long-range interactions. Current evaluations primarily compare models employing global attention (e.g., graph transformers) with those using local neighborhood aggregation (e.g., message-passing neural networks) without a direct measurement of long-range dependency. In this work, we introduce City-Networks, a novel large-scale transductive learning dataset derived from real-world city roads. This dataset features graphs with over $10^5$ nodes and significantly larger diameters than those in existing benchmarks, naturally embodying long-range information. We annotate the graphs using an eccentricity-based approach, ensuring that the classification task inherently requires information from distant nodes. Furthermore, we propose a model-agnostic measurement based on the Jacobians of neighbors from distant hops, offering a principled quantification of long-range dependencies. Finally, we provide theoretical justifications for both our dataset design and the proposed measurement - particularly by focusing on over-smoothing and influence score dilution - which establishes a robust foundation for further exploration of long-range interactions in graph neural networks.
- Abstract(参考訳): 長距離依存は効果的なグラフ表現学習には不可欠だが、既存のデータセットのほとんどは帰納的タスクに適した小さなグラフに焦点を当てており、長距離相互作用に関する限られた洞察を提供する。
現在の評価は、主にグローバルアテンション(例えばグラフトランスフォーマー)を用いたモデルと、長距離依存を直接測定することなく、局所的な近隣アグリゲーション(例えば、メッセージパッシングニューラルネットワーク)を用いたモデルとを比較している。
本研究では,現実の都市道路から派生した大規模トランスダクティブ学習データセットであるCity-Networksを紹介する。
このデータセットは10^5$以上のノードを持つグラフと、既存のベンチマークよりもはるかに大きな直径を持ち、自然に長距離情報を具現化している。
我々は、偏心性に基づくアプローチでグラフに注釈を付け、分類タスクが本質的に遠方のノードからの情報を必要とすることを確実にする。
さらに、遠方ホップの隣人のヤコビアンに基づくモデル非依存の測定を行い、長距離依存の原理的定量化を提案する。
最後に、我々のデータセット設計と提案した測定値(特にオーバースムーシングとインフルエンススコアの希釈)の理論的正当性を提供し、グラフニューラルネットワークにおける長距離相互作用のさらなる探索のための堅牢な基盤を確立する。
関連論文リスト
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - Multi-Scene Generalized Trajectory Global Graph Solver with Composite
Nodes for Multiple Object Tracking [61.69892497726235]
複合ノードメッセージパッシングネットワーク(CoNo-Link)は、超長いフレーム情報を関連付けるためのフレームワークである。
オブジェクトをノードとして扱う従来の方法に加えて、このネットワークは情報インタラクションのためのノードとしてオブジェクトトラジェクトリを革新的に扱う。
我々のモデルは、合成ノードを追加することで、より長い時間スケールでより良い予測を学習することができる。
論文 参考訳(メタデータ) (2023-12-14T14:00:30Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
暗黙グラフニューラルネットワーク(GNN)は、基礎となるグラフの長距離依存性をキャプチャするために提案されている。
暗黙的GNNの2つの弱点は、長距離依存を捉えるための限られた有効範囲による制約付き表現性と、複数の解像度でグラフ上のマルチスケール情報をキャプチャする能力の欠如である。
グラフ上のマルチスケール構造をモデル化できる暗黙の層(MGNNI)を持つマルチスケールグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-15T18:18:55Z) - Affinity-Aware Graph Networks [9.888383815189176]
グラフニューラルネットワーク(GNN)は、リレーショナルデータを学ぶための強力なテクニックとして登場した。
グラフニューラルネットワークの特徴としてアフィニティ尺度の利用について検討する。
本稿では,これらの特徴に基づくメッセージパッシングネットワークを提案し,その性能を様々なノードおよびグラフ特性予測タスクで評価する。
論文 参考訳(メタデータ) (2022-06-23T18:51:35Z) - Long-term Spatio-temporal Forecasting via Dynamic Multiple-Graph
Attention [20.52864145999387]
長期的テンソル時間予測(LSTF)は、空間的領域と時間的領域、文脈的情報、およびデータ固有のパターン間の長期的依存関係を利用する。
本稿では,各ノードのコンテキスト情報と長期駐車による時間的データ依存構造を表現する新しいグラフモデルを提案する。
提案手法は,LSTF予測タスクにおける既存のグラフニューラルネットワークモデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2022-04-23T06:51:37Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
グラフの混合重みとノード間のデータ不均一性の関係に収束の依存性を特徴付ける。
グラフが現在の勾配を混合する能力を定量化する計量法を提案する。
そこで本研究では,パラメータを周期的かつ効率的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T15:54:35Z) - Dimensionality Reduction Meets Message Passing for Graph Node Embeddings [0.0]
ノード埋め込みを教師なしで生成するための主成分分析(PCA)とメッセージパッシングを組み合わせたPCAPassを提案する。
提案手法は,ノード分類ベンチマークにおいて人気の高いGNNと比較して,競争性能が向上することを示す。
我々の研究は、メッセージパッシングとスキップ接続による次元性低減が、グラフ構造化データの長距離依存性を集約する上で有望なメカニズムであることを実証している。
論文 参考訳(メタデータ) (2022-02-01T13:39:00Z) - Hierarchical graph neural nets can capture long-range interactions [8.067880298298185]
与えられたグラフの多重解像度表現を利用する階層的メッセージパッシングモデルについて検討する。
これにより、ローカル情報を失うことなく、大きな受容領域にまたがる特徴の学習が容易になる。
階層グラフネット(HGNet)を導入し、任意の2つの接続ノードに対して、最大対数長のメッセージパスパスが存在することを保証します。
論文 参考訳(メタデータ) (2021-07-15T16:24:22Z) - Learning Graph Neural Networks with Positive and Unlabeled Nodes [34.903471348798725]
グラフニューラルネットワーク(GNN)は、グラフのノード分類など、トランスダクティブな学習タスクのための重要なツールです。
ほとんどのGNNモデルは、各ラウンドで短い距離から情報を集約し、グラフで長距離関係をキャプチャできません。
本論文では,これらの制限を克服するために,新しいグラフニューラルネットワークフレームワーク,LSDAN(Long-Short distance aggregation Network)を提案する。
論文 参考訳(メタデータ) (2021-03-08T11:43:37Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。