Feasibility-aware Imitation Learning from Observations through a Hand-mounted Demonstration Interface
- URL: http://arxiv.org/abs/2503.09018v1
- Date: Wed, 12 Mar 2025 03:14:04 GMT
- Title: Feasibility-aware Imitation Learning from Observations through a Hand-mounted Demonstration Interface
- Authors: Kei Takahashi, Hikaru Sasaki, Takamitsu Matsubara,
- Abstract summary: We propose feasibility-aware behavior cloning from observation (FABCO)<n>In the FABCO framework, the feasibility of each demonstration is assessed using the robot's pre-trained forward and inverse dynamics models.<n>We experimentally validated FABCO's effectiveness by applying it to a pipette insertion task involving a pipette and a vial.
- Score: 10.808201018448274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Imitation learning through a demonstration interface is expected to learn policies for robot automation from intuitive human demonstrations. However, due to the differences in human and robot movement characteristics, a human expert might unintentionally demonstrate an action that the robot cannot execute. We propose feasibility-aware behavior cloning from observation (FABCO). In the FABCO framework, the feasibility of each demonstration is assessed using the robot's pre-trained forward and inverse dynamics models. This feasibility information is provided as visual feedback to the demonstrators, encouraging them to refine their demonstrations. During policy learning, estimated feasibility serves as a weight for the demonstration data, improving both the data efficiency and the robustness of the learned policy. We experimentally validated FABCO's effectiveness by applying it to a pipette insertion task involving a pipette and a vial. Four participants assessed the impact of the feasibility feedback and the weighted policy learning in FABCO. Additionally, we used the NASA Task Load Index (NASA-TLX) to evaluate the workload induced by demonstrations with visual feedback.
Related papers
- Imitation Learning with Precisely Labeled Human Demonstrations [0.0]
This work builds on prior studies that demonstrate the viability of using hand-held grippers for efficient data collection.
We leverage the user's control over the gripper's appearance--specifically by assigning it a unique, easily segmentable color--to enable precise end-effector pose estimation.
We show in simulation that precisely labeled human demonstrations on their own allow policies to reach on average 88.1% of the performance of using robot demonstrations.
arXiv Detail & Related papers (2025-04-18T17:12:00Z) - Curating Demonstrations using Online Experience [52.59275477573012]
We show that Demo-SCORE can effectively identify suboptimal demonstrations without manual curation.<n>Demo-SCORE achieves over 15-35% higher absolute success rate in the resulting policy compared to the base policy trained with all original demonstrations.
arXiv Detail & Related papers (2025-03-05T17:58:16Z) - Dynamic Non-Prehensile Object Transport via Model-Predictive Reinforcement Learning [24.079032278280447]
We propose an approach that combines batch reinforcement learning (RL) with model-predictive control (MPC)<n>We validate the proposed approach through extensive simulated and real-world experiments on a Franka Panda robot performing the robot waiter task.
arXiv Detail & Related papers (2024-11-27T03:33:42Z) - Affordance-Guided Reinforcement Learning via Visual Prompting [51.361977466993345]
Keypoint-based Affordance Guidance for Improvements (KAGI) is a method leveraging rewards shaped by vision-language models (VLMs) for autonomous RL.<n>On real-world manipulation tasks specified by natural language descriptions, KAGI improves the sample efficiency of autonomous RL and enables successful task completion in 30K online fine-tuning steps.
arXiv Detail & Related papers (2024-07-14T21:41:29Z) - AdaDemo: Data-Efficient Demonstration Expansion for Generalist Robotic Agent [75.91274222142079]
In this study, we aim to scale up demonstrations in a data-efficient way to facilitate the learning of generalist robotic agents.
AdaDemo is a framework designed to improve multi-task policy learning by actively and continually expanding the demonstration dataset.
arXiv Detail & Related papers (2024-04-11T01:59:29Z) - Learning Action-Effect Dynamics for Hypothetical Vision-Language
Reasoning Task [50.72283841720014]
We propose a novel learning strategy that can improve reasoning about the effects of actions.
We demonstrate the effectiveness of our proposed approach and discuss its advantages over previous baselines in terms of performance, data efficiency, and generalization capability.
arXiv Detail & Related papers (2022-12-07T05:41:58Z) - Autonomous Assessment of Demonstration Sufficiency via Bayesian Inverse
Reinforcement Learning [22.287031690633174]
We propose a novel self-assessment approach based on inverse reinforcement learning and value-at-risk.
We show that our approach successfully enables robots to perform at users' desired performance levels.
arXiv Detail & Related papers (2022-11-28T16:48:24Z) - Learning Agile Skills via Adversarial Imitation of Rough Partial
Demonstrations [19.257876507104868]
Learning agile skills is one of the main challenges in robotics.
We propose a generative adversarial method for inferring reward functions from partial and potentially physically incompatible demonstrations.
We show that by using a Wasserstein GAN formulation and transitions from demonstrations with rough and partial information as input, we are able to extract policies that are robust and capable of imitating demonstrated behaviors.
arXiv Detail & Related papers (2022-06-23T13:34:11Z) - Learning Feasibility to Imitate Demonstrators with Different Dynamics [23.239058855103067]
The goal of learning from demonstrations is to learn a policy for an agent (imitator) by mimicking the behavior in the demonstrations.
We learn a feasibility metric that captures the likelihood of a demonstration being feasible by the imitator.
Our experiments on four simulated environments and on a real robot show that the policy learned with our approach achieves a higher expected return than prior works.
arXiv Detail & Related papers (2021-10-28T14:15:47Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
Reward function specification remains a major impediment for learning behaviors through deep reinforcement learning.
Visual demonstrations of desired behaviors often presents an easier and more natural way to teach agents.
We develop a variational model-based adversarial imitation learning algorithm.
arXiv Detail & Related papers (2021-07-16T00:15:18Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
We show that a single robotic arm can learn sparse-reward manipulation policies from pixels.
We show that, given only 10 demonstrations, a single robotic arm can learn sparse-reward manipulation policies from pixels.
arXiv Detail & Related papers (2020-12-14T22:18:39Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.