論文の概要: ManeuverGPT Agentic Control for Safe Autonomous Stunt Maneuvers
- arxiv url: http://arxiv.org/abs/2503.09035v1
- Date: Wed, 12 Mar 2025 03:51:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:38:30.512385
- Title: ManeuverGPT Agentic Control for Safe Autonomous Stunt Maneuvers
- Title(参考訳): 安全な自律ステント型マニキュアのためのマニキュアGPTエージェント制御
- Authors: Shawn Azdam, Pranav Doma, Aliasghar Moj Arab,
- Abstract要約: 本稿では,自律走行車における高ダイナミックなスタント動作の生成と実行のための新しいフレームワークManeuverGPTを提案する。
3つの特殊エージェントからなるエージェントアーキテクチャを提案する。
実験により、複数の車両モデル間でのJターン実行が成功した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The next generation of active safety features in autonomous vehicles should be capable of safely executing evasive hazard-avoidance maneuvers akin to those performed by professional stunt drivers to achieve high-agility motion at the limits of vehicle handling. This paper presents a novel framework, ManeuverGPT, for generating and executing high-dynamic stunt maneuvers in autonomous vehicles using large language model (LLM)-based agents as controllers. We target aggressive maneuvers, such as J-turns, within the CARLA simulation environment and demonstrate an iterative, prompt-based approach to refine vehicle control parameters, starting tabula rasa without retraining model weights. We propose an agentic architecture comprised of three specialized agents (1) a Query Enricher Agent for contextualizing user commands, (2) a Driver Agent for generating maneuver parameters, and (3) a Parameter Validator Agent that enforces physics-based and safety constraints. Experimental results demonstrate successful J-turn execution across multiple vehicle models through textual prompts that adapt to differing vehicle dynamics. We evaluate performance via established success criteria and discuss limitations regarding numeric precision and scenario complexity. Our findings underscore the potential of LLM-driven control for flexible, high-dynamic maneuvers, while highlighting the importance of hybrid approaches that combine language-based reasoning with algorithmic validation.
- Abstract(参考訳): 次世代の自動運転車のアクティブセーフティ機能は、プロのスタントドライバーが行うような回避型ハザード回避策を安全に実行し、車両ハンドリングの限界において高いアグレッシブな動作を達成できなければならない。
本稿では,大規模言語モデル(LLM)に基づくエージェントをコントローラとして,自律走行車における高ダイナミックなスタント動作の生成と実行のための新しいフレームワークManeuverGPTを提案する。
我々は、CARLAシミュレーション環境において、Jターンのような攻撃的な操作を目標とし、モデル重みをトレーニングせずにタトゥーララサを起動し、車両制御パラメータを洗練するための反復的かつ迅速なアプローチを実証する。
本稿では,3つの特殊エージェントからなるエージェントアーキテクチャを提案する。(1) ユーザコマンドをコンテキスト化するためのクエリエンリッチアエージェント,(2) 操作パラメータを生成するドライバエージェント,(3) 物理ベースの安全制約を強制するパラメータ検証エージェントである。
実験結果は、異なる車両力学に適応するテキストプロンプトを通じて、複数の車両モデルに対するJターン実行を成功させることを示した。
我々は、確立された成功基準による性能評価を行い、数値精度とシナリオの複雑さに関する制限について議論する。
本研究は,言語に基づく推論とアルゴリズムによる検証を併用したハイブリッドアプローチの重要性を強調しながら,柔軟で高ダイナミックな操作のためのLLM駆動制御の可能性を強調した。
関連論文リスト
- TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Driveは、Teacher LLMを統合して、注意に基づく学生DRLポリシーをガイドするハイブリッドフレームワークである。
自己維持機構はDRLエージェントの探索とこれらの戦略を融合させ、政策収束を加速し、堅牢性を高める。
論文 参考訳(メタデータ) (2025-02-03T14:22:03Z) - Control-ITRA: Controlling the Behavior of a Driving Model [14.31198056147624]
エージェントの動作に影響を与える制御ITRAと呼ばれる手法を,ウェイポイントの割り当てと目標速度の変調によって導入する。
本手法は, 可制御性, 無屈折性トラジェクトリを生成できると同時に, 視界と見えない位置の両方でリアリズムを保ち得ることを示す。
論文 参考訳(メタデータ) (2025-01-17T03:35:11Z) - Adversarial Safety-Critical Scenario Generation using Naturalistic Human Driving Priors [2.773055342671194]
本研究では,自然主義的人間運転先行と強化学習技術を用いた自然逆シナリオ生成ソリューションを提案する。
本研究は,本モデルにより,自然性と逆性の両方をカバーする現実的な安全クリティカルなテストシナリオを生成できることを示す。
論文 参考訳(メタデータ) (2024-08-06T13:58:56Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
適応型パーソナライズされた自動車追従フレームワークであるMetaFollowerを提案する。
まず,モデルに依存しないメタラーニング(MAML)を用いて,様々なCFイベントから共通運転知識を抽出する。
さらに、Long Short-Term Memory (LSTM) と Intelligent Driver Model (IDM) を組み合わせて、時間的不均一性を高い解釈性で反映する。
論文 参考訳(メタデータ) (2024-06-23T15:30:40Z) - Modelling, Positioning, and Deep Reinforcement Learning Path Tracking
Control of Scaled Robotic Vehicles: Design and Experimental Validation [3.807917169053206]
スケールされたロボットカーは通常、車両の状態の推定と制御に特化したタスクを含む階層的な制御機構を備えている。
本稿では, (i) フェデレートされた拡張カルマンフィルタ (FEKF) と (ii) エキスパートデモレータを用いて訓練された新しい深部強化学習 (DRL) パストラッキングコントローラを提案する。
実験により検証されたモデルは、(i)FEKFの設計を支援するために使用され、(ii)DRLに基づく経路追跡アルゴリズムをトレーニングするためのデジタルツインとして機能する。
論文 参考訳(メタデータ) (2024-01-10T14:40:53Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - Learning Terrain-Aware Kinodynamic Model for Autonomous Off-Road Rally
Driving With Model Predictive Path Integral Control [4.23755398158039]
本稿では,固有受容情報と外部受容情報の両方に基づいて,地形を考慮したキノダイナミクスモデルを学習する手法を提案する。
提案モデルでは、6自由度運動の信頼性予測が生成され、接触相互作用を推定することもできる。
シミュレーションされたオフロードトラック実験により提案手法の有効性を実証し,提案手法がベースラインより優れていることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:09:49Z) - Augmented Driver Behavior Models for High-Fidelity Simulation Study of
Crash Detection Algorithms [2.064612766965483]
人力車と自動車の両方を含むハイブリッド輸送システムのシミュレーションプラットフォームを提案する。
我々は、人間の運転タスクを分解し、大規模な交通シナリオをシミュレートするためのモジュラーアプローチを提供する。
我々は、大きな駆動データセットを分析し、異なる駆動特性を最もよく記述する表現的パラメータを抽出する。
論文 参考訳(メタデータ) (2022-08-10T19:59:16Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。