Simulation of Two-Qubit Grover Algorithm in MBQC with Universal Blind Quantum Computation
- URL: http://arxiv.org/abs/2503.09099v1
- Date: Wed, 12 Mar 2025 06:29:35 GMT
- Title: Simulation of Two-Qubit Grover Algorithm in MBQC with Universal Blind Quantum Computation
- Authors: Youngkyung Lee, Doyoung Chung,
- Abstract summary: Universal Blind Quantum Computation protocol provides framework for ensuring function and data privacy in quantum computing.<n>Current quantum cloud computing platforms are limited in their ability to simulate MBQC efficiently.<n>This paper presents an efficient method to simulate MBQC on circuit-based quantum computing platforms.
- Score: 0.5755004576310334
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The advancement of quantum computing technology has led to the emergence of early-stage quantum cloud computing services. To fully realize the potential of quantum cloud computing, it is essential to develop techniques that ensure the privacy of both data and functions. Quantum computations often leverage superposition to evaluate a function on all possible inputs simultaneously, making function privacy a critical requirement. In 2009, Broadbent et al. introduced the Universal Blind Quantum Computation (UBQC) protocol, which is based on Measurement-Based Quantum Computation (MBQC) and provides a framework for ensuring both function and data privacy in quantum computing. Although theoretical results indicate an equivalence between MBQC and circuitbased quantum computation, translating MBQC into circuitbased implementations remains challenging due to higher qubit requirements and the complexity of the transformation process. Consequently, current quantum cloud computing platforms are limited in their ability to simulate MBQC efficiently. This paper presents an efficient method to simulate MBQC on circuit-based quantum computing platforms. We validate this approach by implementing the two-qubit Grover algorithm in the MBQC framework and further demonstrate blindness by applying the UBQC protocol. This work verifies the simulation of a blind quantum computation using the two-qubit Grover algorithm on a circuit-based quantum computing platform.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Applying an Evolutionary Algorithm to Minimize Teleportation Costs in Distributed Quantum Computing [3.0846297887400977]
A quantum communication network can be formed by connecting multiple quantum computers (QCs) through classical and quantum channels.
In distributed quantum computing, QCs collectively perform a quantum computation.
In this paper, we propose an evolutionary algorithm for this problem.
arXiv Detail & Related papers (2023-11-30T13:10:28Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Schrödinger as a Quantum Programmer: Estimating Entanglement via Steering [3.187381965457262]
We develop a quantum algorithm that tests for and quantifies the separability of a general bipartite state by using the quantum steering effect.
Our findings provide a meaningful connection between steering, entanglement, quantum algorithms, and quantum computational complexity theory.
arXiv Detail & Related papers (2023-03-14T13:55:06Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Realizations of Measurement Based Quantum Computing [0.0]
Measurement Based Quantum Computation model achieves universal quantum computation by employing projective single qubit measurements with classical feedforward on a highly entangled multipartite cluster state.
This review focuses on three such efforts, each utilizing a different quantum computing technology viz., superconducting qubits, trapped ion qubits and squeezed photon states.
arXiv Detail & Related papers (2021-12-22T01:04:11Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Distributed Quantum Computing with QMPI [11.71212583708166]
We introduce an extension of the Message Passing Interface (MPI) to enable high-performance implementations of distributed quantum algorithms.
In addition to a prototype implementation of quantum MPI, we present a performance model for distributed quantum computing, SENDQ.
arXiv Detail & Related papers (2021-05-03T18:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.