Urban Region Representation Learning: A Flexible Approach
- URL: http://arxiv.org/abs/2503.09128v1
- Date: Wed, 12 Mar 2025 07:33:44 GMT
- Title: Urban Region Representation Learning: A Flexible Approach
- Authors: Fengze Sun, Yanchuan Chang, Egemen Tanin, Shanika Karunasekera, Jianzhong Qi,
- Abstract summary: We propose a model named FlexiReg for urban region representation learning that is flexible with both the formation of urban regions and the input region features.<n>We show that FlexiReg outperforms state-of-the-art models by up to 202% in term of the accuracy of four diverse downstream tasks using the produced urban region representations.
- Score: 14.345157663791133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing availability of urban data offers new opportunities for learning region representations, which can be used as input to machine learning models for downstream tasks such as check-in or crime prediction. While existing solutions have produced promising results, an issue is their fixed formation of regions and fixed input region features, which may not suit the needs of different downstream tasks. To address this limitation, we propose a model named FlexiReg for urban region representation learning that is flexible with both the formation of urban regions and the input region features. FlexiReg is based on a spatial grid partitioning over the spatial area of interest. It learns representations for the grid cells, leveraging publicly accessible data, including POI, land use, satellite imagery, and street view imagery. We propose adaptive aggregation to fuse the cell representations and prompt learning techniques to tailor the representations towards different tasks, addressing the needs of varying formations of urban regions and downstream tasks. Extensive experiments on five real-world datasets demonstrate that FlexiReg outperforms state-of-the-art models by up to 202% in term of the accuracy of four diverse downstream tasks using the produced urban region representations.
Related papers
- Multimodal Contrastive Learning of Urban Space Representations from POI Data [2.695321027513952]
CaLLiPer (Contrastive Language-Location Pre-training) is a representation learning model that embeds continuous urban spaces into vector representations.
We validate CaLLiPer's effectiveness by applying it to learning urban space representations in London, UK.
arXiv Detail & Related papers (2024-11-09T16:24:07Z) - Explainable Hierarchical Urban Representation Learning for Commuting Flow Prediction [1.5156879440024378]
Commuting flow prediction is an essential task for municipal operations in the real world.
We develop a heterogeneous graph-based model to generate meaningful region embeddings for predicting different types of inter-level OD flows.
Our proposed model outperforms existing models in terms of a uniform urban structure.
arXiv Detail & Related papers (2024-08-27T03:30:01Z) - Urban Region Pre-training and Prompting: A Graph-based Approach [10.375941950028938]
We propose a $textbfG$raph-based $textbfU$rban $textbfR$egion $textbfP$re-training and $textbfP$rompting framework for region representation learning.
arXiv Detail & Related papers (2024-08-12T05:00:23Z) - RegionGPT: Towards Region Understanding Vision Language Model [88.42271128373191]
RegionGPT (short as RGPT) is a novel framework designed for complex region-level captioning and understanding.
We develop an automated region caption data generation pipeline, enriching the training set with detailed region-level captions.
We demonstrate that a universal RGPT model can be effectively applied and significantly enhancing performance across a range of region-level tasks.
arXiv Detail & Related papers (2024-03-04T18:58:08Z) - Cross-City Matters: A Multimodal Remote Sensing Benchmark Dataset for
Cross-City Semantic Segmentation using High-Resolution Domain Adaptation
Networks [82.82866901799565]
We build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, multispectral, SAR) for the study purpose of the cross-city semantic segmentation task.
Beyond the single city, we propose a high-resolution domain adaptation network, HighDAN, to promote the AI model's generalization ability from the multi-city environments.
HighDAN is capable of retaining the spatially topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion.
arXiv Detail & Related papers (2023-09-26T23:55:39Z) - Attentive Graph Enhanced Region Representation Learning [7.4106801792345705]
Representing urban regions accurately and comprehensively is essential for various urban planning and analysis tasks.
We propose the Attentive Graph Enhanced Region Representation Learning (ATGRL) model, which aims to capture comprehensive dependencies from multiple graphs and learn rich semantic representations of urban regions.
arXiv Detail & Related papers (2023-07-06T16:38:43Z) - GeoNet: Benchmarking Unsupervised Adaptation across Geographies [71.23141626803287]
We study the problem of geographic robustness and make three main contributions.
First, we introduce a large-scale dataset GeoNet for geographic adaptation.
Second, we hypothesize that the major source of domain shifts arise from significant variations in scene context.
Third, we conduct an extensive evaluation of several state-of-the-art unsupervised domain adaptation algorithms and architectures.
arXiv Detail & Related papers (2023-03-27T17:59:34Z) - Grid-guided Neural Radiance Fields for Large Urban Scenes [146.06368329445857]
Recent approaches propose to geographically divide the scene and adopt multiple sub-NeRFs to model each region individually.
An alternative solution is to use a feature grid representation, which is computationally efficient and can naturally scale to a large scene.
We present a new framework that realizes high-fidelity rendering on large urban scenes while being computationally efficient.
arXiv Detail & Related papers (2023-03-24T13:56:45Z) - GIVL: Improving Geographical Inclusivity of Vision-Language Models with
Pre-Training Methods [62.076647211744564]
We propose GIVL, a Geographically Inclusive Vision-and-Language Pre-trained model.
There are two attributes of geo-diverse visual concepts which can help to learn geo-diverse knowledge: 1) concepts under similar categories have unique knowledge and visual characteristics, 2) concepts with similar visual features may fall in completely different categories.
Compared with similar-size models pre-trained with similar scale of data, GIVL achieves state-of-the-art (SOTA) and more balanced performance on geo-diverse V&L tasks.
arXiv Detail & Related papers (2023-01-05T03:43:45Z) - Urban Region Profiling via A Multi-Graph Representation Learning
Framework [0.0]
We propose a multi-graph representative learning framework, called Region2Vec, for urban region profiling.
Experiments on real-world datasets show that Region2Vec can be employed in three applications and outperforms all state-of-the-art baselines.
arXiv Detail & Related papers (2022-02-04T11:05:37Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.