論文の概要: Unmask It! AI-Generated Product Review Detection in Dravidian Languages
- arxiv url: http://arxiv.org/abs/2503.09289v1
- Date: Wed, 12 Mar 2025 11:35:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:40:53.562096
- Title: Unmask It! AI-Generated Product Review Detection in Dravidian Languages
- Title(参考訳): アンマスク! ドラヴィダ語におけるAI生成製品レビュー検出
- Authors: Somsubhra De, Advait Vats,
- Abstract要約: 生成AIは、AI生成レビューの急増につながっており、しばしばオンラインプラットフォームの信頼性に深刻な脅威をもたらしている。
本研究では,2つの低リソース言語であるタミル語とマラヤラム語におけるAI生成製品レビューの検出に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The rise of Generative AI has led to a surge in AI-generated reviews, often posing a serious threat to the credibility of online platforms. Reviews serve as the primary source of information about products and services. Authentic reviews play a vital role in consumer decision-making. The presence of fabricated content misleads consumers, undermines trust and facilitates potential fraud in digital marketplaces. This study focuses on detecting AI-generated product reviews in Tamil and Malayalam, two low-resource languages where research in this domain is relatively under-explored. We worked on a range of approaches - from traditional machine learning methods to advanced transformer-based models such as Indic-BERT, IndicSBERT, MuRIL, XLM-RoBERTa and MalayalamBERT. Our findings highlight the effectiveness of leveraging the state-of-the-art transformers in accurately identifying AI-generated content, demonstrating the potential in enhancing the detection of fake reviews in low-resource language settings.
- Abstract(参考訳): ジェネレーティブAIの台頭により、AI生成レビューが急増し、しばしばオンラインプラットフォームの信頼性に深刻な脅威をもたらしている。
レビューは製品やサービスに関する情報の主要な情報源となっている。
消費者の意思決定において、認証レビューは重要な役割を果たす。
制作されたコンテンツの存在は、消費者を誤解させ、信頼を損ね、デジタル市場における潜在的な詐欺を促進する。
この研究は、この領域の研究が比較的過小評価されている2つの低リソース言語であるタミル語とマラヤラム語におけるAI生成製品レビューの検出に焦点を当てている。
従来の機械学習手法から、Indic-BERT、IndicSBERT、MuRIL、XLM-RoBERTa、MalayalamBERTといった先進的なトランスフォーマーモデルまで、さまざまなアプローチに取り組んできました。
我々の研究は、AI生成コンテンツを正確に識別するために最先端のトランスフォーマーを活用することの有効性を強調し、低リソース言語設定における偽レビューの検出を強化する可能性を実証した。
関連論文リスト
- Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AIが生成する合成メディア、別名Deepfakesは、エンターテイメントからサイバーセキュリティまで、多くの領域に影響を与えている。
ディープフェイク検出は、微妙な矛盾やアーティファクトを機械学習技術で識別することに焦点を当て、研究の不可欠な領域となっている。
本稿では,これらの課題に対処する主要なアルゴリズムについて,その利点,限界,今後の展望について検討する。
論文 参考訳(メタデータ) (2024-08-01T08:57:47Z) - What Matters in Explanations: Towards Explainable Fake Review Detection Focusing on Transformers [45.55363754551388]
顧客のレビューとフィードバックは、Amazon、Zalando、eBayなどのEコマースプラットフォームにおいて重要な役割を果たす。
売り手が偽レビューやスパムレビューを投稿し、潜在的な顧客を欺き、製品に関する意見を操作しているという懸念が有力である。
本稿では,偽レビューを高精度に検出するための説明可能なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-24T13:26:02Z) - Who Writes the Review, Human or AI? [0.36498648388765503]
本研究では,AIによる書評と人間による書評を正確に区別する手法を提案する。
提案手法は移動学習を利用して,異なるトピック間で生成したテキストを識別する。
実験の結果、元のテキストのソースを検出でき、精度96.86%に達することが示されている。
論文 参考訳(メタデータ) (2024-05-30T17:38:44Z) - Safeguarding Marketing Research: The Generation, Identification, and Mitigation of AI-Fabricated Disinformation [0.26107298043931204]
生成AIは、人間のコントリビューションを忠実に模倣するコンテンツを生成する能力を確立している。
これらのモデルは、世論の操作や認識の歪曲に利用することができ、結果としてデジタルプラットフォームに対する信頼が低下する。
本研究は,マーケティング文献と実践に3つの方法で貢献する。
論文 参考訳(メタデータ) (2024-03-17T13:08:28Z) - AiGen-FoodReview: A Multimodal Dataset of Machine-Generated Restaurant
Reviews and Images on Social Media [57.70351255180495]
AiGen-FoodReviewは、20,144のレストランレビューイメージペアからなるデータセットである。
FLAVAで99.80%のマルチモーダル精度を達成し,一様・多モーダル検出モデルについて検討する。
この論文は、データセットをオープンソース化し、偽レビュー検出装置を公開し、非モーダルかつマルチモーダルな偽レビュー検出タスクでの使用を推奨し、合成データと真正データにおける言語的特徴と視覚的特徴を評価することで貢献する。
論文 参考訳(メタデータ) (2024-01-16T20:57:36Z) - AI Content Self-Detection for Transformer-based Large Language Models [0.0]
本稿では、直接起点検出の概念を導入し、生成型AIシステムが出力を認識し、人文テキストと区別できるかどうかを評価する。
GoogleのBardモデルは、精度94%の自己検出の最大の能力を示し、OpenAIのChatGPTは83%である。
論文 参考訳(メタデータ) (2023-12-28T10:08:57Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - Factuality Challenges in the Era of Large Language Models [113.3282633305118]
大規模言語モデル(LLM)は、誤った、誤った、あるいは誤解を招くコンテンツを生成する。
LLMは悪意のあるアプリケーションに利用することができる。
これは、ユーザーを欺く可能性があるという点で、社会に重大な課題をもたらす。
論文 参考訳(メタデータ) (2023-10-08T14:55:02Z) - Counter Turing Test CT^2: AI-Generated Text Detection is Not as Easy as
You May Think -- Introducing AI Detectability Index [9.348082057533325]
AI生成テキスト検出(AGTD)はすでに研究で注目を集めているトピックとして現れている。
本稿では,既存のAGTD手法の脆弱性を総合的に評価することを目的とした手法のベンチマークであるCounter Turing Test (CT2)を紹介する。
論文 参考訳(メタデータ) (2023-10-08T06:20:36Z) - Can AI-Generated Text be Reliably Detected? [50.95804851595018]
大規模言語モデル(LLM)は、様々なアプリケーションで非常によく機能します。
盗作、偽ニュースの発生、スパムなどの活動においてこれらのモデルが誤用される可能性があることは、彼らの責任ある使用に対する懸念を引き起こしている。
我々は、攻撃者の存在下で、これらのAIテキスト検出装置の堅牢性を強調テストする。
論文 参考訳(メタデータ) (2023-03-17T17:53:19Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。