論文の概要: Adjusted Count Quantification Learning on Graphs
- arxiv url: http://arxiv.org/abs/2503.09395v1
- Date: Wed, 12 Mar 2025 13:42:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:35:13.910052
- Title: Adjusted Count Quantification Learning on Graphs
- Title(参考訳): グラフによる数量化の調整学習
- Authors: Clemens Damke, Eyke Hüllermeier,
- Abstract要約: 我々は、人気のあるAdjusted Classify & Count (ACC) メソッドをグラフに拡張する。
ACC が依存する事前確率シフト仮定は、しばしば満たされないことを示す。
本稿では,構造重要度サンプリング(SIS)と近傍対応ACCの2つの新しいグラフ定量化手法を提案する。
- 参考スコア(独自算出の注目度): 21.602569813024
- License:
- Abstract: Quantification learning is the task of predicting the label distribution of a set of instances. We study this problem in the context of graph-structured data, where the instances are vertices. Previously, this problem has only been addressed via node clustering methods. In this paper, we extend the popular Adjusted Classify & Count (ACC) method to graphs. We show that the prior probability shift assumption upon which ACC relies is often not fulfilled and propose two novel graph quantification techniques: Structural importance sampling (SIS) makes ACC applicable in graph domains with covariate shift. Neighborhood-aware ACC improves quantification in the presence of non-homophilic edges. We show the effectiveness of our techniques on multiple graph quantification tasks.
- Abstract(参考訳): 量子化学習は、一連のインスタンスのラベル分布を予測するタスクである。
我々は,この問題を,インスタンスが頂点となるグラフ構造化データの文脈で研究する。
これまでこの問題に対処したのはノードクラスタリング手法のみであった。
本稿では、一般的な調整された分類とカウント法(ACC)をグラフに拡張する。
本稿では、ACCが依存する事前確率シフトの仮定が満たされていないことを示し、新しい2つのグラフ量子化手法を提案する: 構造的重要性サンプリング(SIS)は、ACCを共変量シフトを持つグラフ領域に適用する。
近隣を意識したACCは、非ホモ親和性エッジの存在下での定量化を改善する。
複数のグラフ定量化タスクにおいて,本手法の有効性を示す。
関連論文リスト
- CLEAR: Cluster-based Prompt Learning on Heterogeneous Graphs [19.956925820094177]
ヘテロジニアスグラフ上のクラスタベースのプロンプトモデルであるCLEARを提案する。
私たちは、同じトレーニング目標を共有するために、プレテキストと下流のタスクを調整します。
下流タスクの実験により、CLEARの優位性が確認された。
論文 参考訳(メタデータ) (2025-02-13T03:10:19Z) - Tensor-based Graph Learning with Consistency and Specificity for Multi-view Clustering [20.925436328405574]
一貫性と特異性を同時に検討する新しい多視点グラフ学習フレームワークを提案する。
我々は、ノイズフリーグラフ融合のための新しいテンソルベースのターゲットグラフ学習パラダイムを定式化する。
6つのデータセットの実験により,本手法の優位性を実証した。
論文 参考訳(メタデータ) (2024-03-27T09:30:50Z) - From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited [51.24526202984846]
グラフベースの半教師付き学習(GSSL)は、長い間ホットな研究トピックだった。
グラフ畳み込みネットワーク (GCN) は, 有望な性能を示す主要な技術となっている。
論文 参考訳(メタデータ) (2023-09-24T10:10:21Z) - Extended Graph Assessment Metrics for Graph Neural Networks [13.49677006107642]
回帰タスクと連続隣接行列のための拡張グラフアセスメントメトリクス(GAM)を導入する。
異なる医学集団グラフと異なる学習環境下で、これらの指標とモデル性能の相関関係を示す。
論文 参考訳(メタデータ) (2023-07-13T13:55:57Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
従来見過ごされていた現象を調査し、多くの場合、元のグラフに対して密に連結された補グラフを見つけることができる。
より密度の高いグラフは、選択的で有意義な知識を伝達するための自然なブリッジを提供する元のグラフとノードを共有することができる。
この設定をグラフインターセクション誘導トランスファーラーニング(GITL)とみなし,eコマースや学術共同オーサシップ予測の実践的応用に動機づけられた。
論文 参考訳(メタデータ) (2023-02-27T22:56:06Z) - Deep Graph-Level Clustering Using Pseudo-Label-Guided Mutual Information
Maximization Network [31.38584638254226]
我々は、グラフの集合を異なるグループに分割する問題を、同じグループのグラフが類似しているのに対して、異なるグループのグラフが異なるように研究する。
この問題を解決するために,Deep Graph-Level Clustering (DGLC) と呼ばれる新しい手法を提案する。
DGLCはグラフレベルの表現学習とグラフレベルのクラスタリングをエンドツーエンドで実現しています。
論文 参考訳(メタデータ) (2023-02-05T12:28:08Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
トレーニングセット内の既存グラフから直接正のグラフインスタンスを選択することを提案する。
私たちの選択は、特定のドメイン固有のペアワイズ類似度測定に基づいています。
さらに,ノードを動的にマスキングしてグラフ上に均等に分配する適応ノードレベルの事前学習手法を開発した。
論文 参考訳(メタデータ) (2022-06-23T20:12:51Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
データの局所構造とグローバル構造の両方を保存するためのグラフ学習フレームワークを提案する。
本手法は, サンプルの自己表現性を利用して, 局所構造を尊重するために, 大域的構造と適応的隣接アプローチを捉える。
我々のモデルは、ある条件下でのカーネルk平均法とk平均法の組合せと等価である。
論文 参考訳(メタデータ) (2020-08-31T08:41:20Z) - Graph topology inference benchmarks for machine learning [16.857405938139525]
本稿では,グラフ推論手法の相対的メリットと限界を明らかにするために,いくつかのベンチマークを導入する。
我々はまた、文学において最も顕著な技法のいくつかを対比している。
論文 参考訳(メタデータ) (2020-07-16T09:40:32Z) - Unsupervised Graph Embedding via Adaptive Graph Learning [85.28555417981063]
グラフオートエンコーダ(GAE)は、グラフ埋め込みのための表現学習において強力なツールである。
本稿では,2つの新しい教師なしグラフ埋め込み法,適応グラフ学習(BAGE)による教師なしグラフ埋め込み,変分適応グラフ学習(VBAGE)による教師なしグラフ埋め込みを提案する。
いくつかのデータセットに関する実験的研究により、我々の手法がノードクラスタリング、ノード分類、グラフ可視化タスクにおいて、ベースラインよりも優れていることが実証された。
論文 参考訳(メタデータ) (2020-03-10T02:33:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。