論文の概要: Federated Smoothing ADMM for Localization
- arxiv url: http://arxiv.org/abs/2503.09497v1
- Date: Wed, 12 Mar 2025 16:01:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:35:11.770991
- Title: Federated Smoothing ADMM for Localization
- Title(参考訳): 局所化のためのFederated Smoothing ADMM
- Authors: Reza Mirzaeifard, Ashkan Moradi, Masahiro Yukawa, Stefan Werner,
- Abstract要約: フェデレートされたシステムは、分散データ、非滑らか性、非滑らか性によって特徴づけられる。
このような環境に固有のスケーラビリティと外乱問題に対処する頑健なアルゴリズムを提案する。
提案アルゴリズムの信頼性を検証するため,定常点に収束することを示す。
数値シミュレーションは、既存の最先端ローカライゼーション法と比較して収束レジリエンスの優れた性能を強調している。
- 参考スコア(独自算出の注目度): 9.25126455172971
- License:
- Abstract: This paper addresses the challenge of localization in federated settings, which are characterized by distributed data, non-convexity, and non-smoothness. To tackle the scalability and outlier issues inherent in such environments, we propose a robust algorithm that employs an $\ell_1$-norm formulation within a novel federated ADMM framework. This approach addresses the problem by integrating an iterative smooth approximation for the total variation consensus term and employing a Moreau envelope approximation for the convex function that appears in a subtracted form. This transformation ensures that the problem is smooth and weakly convex in each iteration, which results in enhanced computational efficiency and improved estimation accuracy. The proposed algorithm supports asynchronous updates and multiple client updates per iteration, which ensures its adaptability to real-world federated systems. To validate the reliability of the proposed algorithm, we show that the method converges to a stationary point, and numerical simulations highlight its superior performance in convergence speed and outlier resilience compared to existing state-of-the-art localization methods.
- Abstract(参考訳): 本稿では,分散データ,非凸性,非平滑性を特徴とするフェデレーション・セッティングにおけるローカライゼーションの課題について述べる。
このような環境に固有のスケーラビリティと外れ値の問題に対処するため,新しいADMMフレームワーク内に$\ell_1$-normの定式化を組み込んだ頑健なアルゴリズムを提案する。
提案手法は,全変量収束項に対する反復的滑らかな近似と,減算形式に現れる凸関数に対するモローエンベロープ近似を併用することにより,この問題に対処する。
この変換は、各繰り返しにおいて問題が滑らかで弱い凸であることを保証するため、計算効率が向上し、推定精度が向上する。
提案アルゴリズムは非同期更新と反復毎に複数のクライアント更新をサポートし,実世界のフェデレーションシステムへの適応性を保証する。
提案手法の信頼性を検証するため,提案手法は定常点に収束し,数値シミュレーションにより,既存手法と比較して収束速度と出力レジリエンスの優れた性能を示す。
関連論文リスト
- Communication-Efficient Stochastic Distributed Learning [3.2923780772605595]
非および凸型、非指向型ネットワークの分散学習問題に対処する。
特に,高通信コストの課題に対処するために,分散マルチプライヤの交換方法(MM)に基づく小説を設計する。
論文 参考訳(メタデータ) (2025-01-23T10:05:23Z) - A unified consensus-based parallel ADMM algorithm for high-dimensional
regression with combined regularizations [3.280169909938912]
並列交互乗算器 (ADMM) は大規模分散データセットの処理に有効であることが広く認識されている。
提案アルゴリズムは,財務事例の信頼性,安定性,スケーラビリティを示す。
論文 参考訳(メタデータ) (2023-11-21T03:30:38Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Robust Networked Federated Learning for Localization [7.332862402432447]
本稿では,データを複数のデバイスに分散するフェデレーション環境での非滑らかな近似問題に対処する。
本稿では,分散サブグラディエントフレームワークにおけるロバストな定式化を,これらの障害に対処するために明示的に設計した,$L_$-normを採用する手法を提案する。
論文 参考訳(メタデータ) (2023-08-31T13:54:37Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Mobilizing Personalized Federated Learning in Infrastructure-Less and
Heterogeneous Environments via Random Walk Stochastic ADMM [0.14597673707346284]
本稿では,データヘテロジニティを持つ孤立ノードを特徴とする実践シナリオにおいて,フェデレートラーニング(FL)を実装する上での課題について考察する。
これらの課題を克服するために,モビリティとレジリエンスの促進を目的とした,パーソナライズされたFLアプローチを提案する。
我々はRWSADMM(Random Walk Alternating Direction Method of Multipliers)と呼ばれる新しい最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-04-25T03:00:18Z) - A robust method for reliability updating with equality information using
sequential adaptive importance sampling [8.254850675268957]
信頼性更新(Reliability update)とは、ベイジアン更新技術と構造的信頼性解析を統合した問題である。
本稿では,逐次重要サンプリングとK平均クラスタリングを組み合わせたRU-SAISという革新的な手法を提案する。
その結果, RU-SAISは既存手法よりも精度が高く, 堅牢な後方故障確率推定が可能であることが示唆された。
論文 参考訳(メタデータ) (2023-03-08T12:55:40Z) - Faster Adaptive Federated Learning [84.38913517122619]
フェデレートラーニングは分散データの出現に伴って注目を集めている。
本稿では,クロスサイロFLにおけるモーメントに基づく分散低減手法に基づく適応アルゴリズム(FAFED)を提案する。
論文 参考訳(メタデータ) (2022-12-02T05:07:50Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Tackling the Objective Inconsistency Problem in Heterogeneous Federated
Optimization [93.78811018928583]
本稿では、フェデレートされた異種最適化アルゴリズムの収束性を分析するためのフレームワークを提供する。
我々は,高速な誤差収束を保ちながら,客観的な矛盾を解消する正規化平均化手法であるFedNovaを提案する。
論文 参考訳(メタデータ) (2020-07-15T05:01:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。