論文の概要: APECS: Adaptive Personalized Control System Architecture
- arxiv url: http://arxiv.org/abs/2503.09624v1
- Date: Mon, 10 Mar 2025 20:11:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:50:47.055159
- Title: APECS: Adaptive Personalized Control System Architecture
- Title(参考訳): APECS: 適応型パーソナライズドコントロールシステムアーキテクチャ
- Authors: Marius F. R. Juston, Alex Gisi, William R. Norris, Dustin Nottage, Ahmet Soylemezoglu,
- Abstract要約: 本稿では,アダプティブ・パーソナライズド・コントロール・システム(APECS)アーキテクチャについて述べる。
システムの目的に対して適切な制約を定義するアーキテクチャが開発されている。
リプシッツと結果の制御子上のセクター境界を定式化する方法が導出され、望ましい制御特性が保証される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents the Adaptive Personalized Control System (APECS) architecture, a novel framework for human-in-the-loop control. An architecture is developed which defines appropriate constraints for the system objectives. A method for enacting Lipschitz and sector bounds on the resulting controller is derived to ensure desirable control properties. An analysis of worst-case loss functions and the optimal loss function weighting is made to implement an effective training scheme. Finally, simulations are carried out to demonstrate the effectiveness of the proposed architecture. This architecture resulted in a 4.5% performance increase compared to the human operator and 9% to an unconstrained feedforward neural network trained in the same way.
- Abstract(参考訳): 本稿では,アダプティブ・パーソナライズド・コントロール・システム(APECS)アーキテクチャについて述べる。
システムの目的に対して適切な制約を定義するアーキテクチャが開発されている。
リプシッツと結果の制御子上のセクター境界を定式化する方法が導出され、望ましい制御特性が保証される。
最短ケース損失関数と最適損失関数重み付けの分析を行い、効果的なトレーニングスキームを実装した。
最後に,提案手法の有効性を示すシミュレーションを行った。
このアーキテクチャは、人間のオペレータと比べて4.5%パフォーマンスが向上し、9%が同じ方法でトレーニングされた非拘束フィードフォワードニューラルネットワークである。
関連論文リスト
- AI-in-the-Loop Sensing and Communication Joint Design for Edge Intelligence [65.29835430845893]
本稿では,AI-in-the-loopジョイントセンシングと通信によるエッジインテリジェンス向上のためのフレームワークを提案する。
私たちの研究の重要な貢献は、バリデーション損失とシステムのチューニング可能なパラメータとの間に明確な関係を確立することです。
提案手法は, 通信エネルギー消費を最大77%削減し, 試料数で測定した検知コストを最大52%削減する。
論文 参考訳(メタデータ) (2025-02-14T14:56:58Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Structure-Enhanced DRL for Optimal Transmission Scheduling [43.801422320012286]
本稿では,遠隔推定システムの送信スケジューリング問題に焦点をあてる。
システムの最適スケジューリングのための構造強化型深層強化学習フレームワークを開発した。
特に,政策構造に従う行動を選択する傾向にある構造強化行動選択法を提案する。
論文 参考訳(メタデータ) (2022-12-24T10:18:38Z) - Structure-Enhanced Deep Reinforcement Learning for Optimal Transmission
Scheduling [47.29474858956844]
マルチセンサリモート推定システムの最適スケジューリングのための構造強化型深部強化学習フレームワークを開発した。
特に,政策構造に従う行動を選択する傾向にある構造強化行動選択法を提案する。
数値計算の結果,提案したDRLアルゴリズムはトレーニング時間を50%削減し,遠隔推定MSEを10%から25%削減できることがわかった。
論文 参考訳(メタデータ) (2022-11-20T00:13:35Z) - SmoothNets: Optimizing CNN architecture design for differentially
private deep learning [69.10072367807095]
DPSGDは、サンプルごとの勾配の切り抜きとノイズ付けを必要とする。
これにより、非プライベートトレーニングと比較してモデルユーティリティが削減される。
SmoothNetと呼ばれる新しいモデルアーキテクチャを蒸留し,DP-SGDトレーニングの課題に対するロバスト性の向上を特徴とした。
論文 参考訳(メタデータ) (2022-05-09T07:51:54Z) - Optimisation of Structured Neural Controller Based on Continuous-Time
Policy Gradient [2.297079626504224]
本研究では、連続時間(決定論的)動的システムの非線形構造制御のためのポリシー最適化フレームワークを提案する。
提案手法は、関連する科学的知識に基づいて、コントローラの構造を規定する。
航空宇宙応用に関する数値実験は、構造化非線形コントローラ最適化フレームワークの有用性を実証している。
論文 参考訳(メタデータ) (2022-01-17T08:06:19Z) - RL-Controller: a reinforcement learning framework for active structural
control [0.0]
フレキシブルでスケーラブルなシミュレーション環境であるRL-Controllerを導入することで,アクティブコントローラを設計するための新しいRLベースのアプローチを提案する。
提案するフレームワークは,5階建てのベンチマークビルディングに対して,平均65%の削減率で,容易に学習可能であることを示す。
LQG 能動制御法との比較研究において,提案したモデルフリーアルゴリズムはより最適なアクチュエータ強制戦略を学習することを示した。
論文 参考訳(メタデータ) (2021-03-13T04:42:13Z) - Reinforcement Learning Control of Robotic Knee with Human in the Loop by
Flexible Policy Iteration [17.365135977882215]
本研究は,ポリシーアルゴリズムに革新的な特徴を導入することで,重要な空白を埋める。
本稿では,近似値関数の収束,解の最適性,システムの安定性などのシステムレベルの性能を示す。
論文 参考訳(メタデータ) (2020-06-16T09:09:48Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
我々は,制約付きポリシー最適化(CPPO)の実装に基づくRLフレームワークであるGCPOを紹介する。
誘導制約付きRLは所望の最適値に近い高速収束を実現し,正確な報酬関数チューニングを必要とせず,最適かつ物理的に実現可能なロボット制御動作を実現することを示す。
論文 参考訳(メタデータ) (2020-02-22T10:15:53Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。