論文の概要: Enhancing Object Detection Accuracy in Autonomous Vehicles Using Synthetic Data
- arxiv url: http://arxiv.org/abs/2411.15602v1
- Date: Sat, 23 Nov 2024 16:38:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:23:02.046492
- Title: Enhancing Object Detection Accuracy in Autonomous Vehicles Using Synthetic Data
- Title(参考訳): 合成データを用いた自動運転車の物体検出精度向上
- Authors: Sergei Voronin, Abubakar Siddique, Muhammad Iqbal,
- Abstract要約: 機械学習モデルの性能は、トレーニングデータセットの性質とサイズに依存する。
正確で信頼性の高い機械学習モデルを構築するためには、高品質、多様性、関連性、代表的トレーニングデータが不可欠である。
十分に設計された合成データは、機械学習アルゴリズムの性能を向上させることができると仮定されている。
- 参考スコア(独自算出の注目度): 0.8267034114134277
- License:
- Abstract: The rapid progress in machine learning models has significantly boosted the potential for real-world applications such as autonomous vehicles, disease diagnoses, and recognition of emergencies. The performance of many machine learning models depends on the nature and size of the training data sets. These models often face challenges due to the scarcity, noise, and imbalance in real-world data, limiting their performance. Nonetheless, high-quality, diverse, relevant and representative training data is essential to build accurate and reliable machine learning models that adapt well to real-world scenarios. It is hypothesised that well-designed synthetic data can improve the performance of a machine learning algorithm. This work aims to create a synthetic dataset and evaluate its effectiveness to improve the prediction accuracy of object detection systems. This work considers autonomous vehicle scenarios as an illustrative example to show the efficacy of synthetic data. The effectiveness of these synthetic datasets in improving the performance of state-of-the-art object detection models is explored. The findings demonstrate that incorporating synthetic data improves model performance across all performance matrices. Two deep learning systems, System-1 (trained on real-world data) and System-2 (trained on a combination of real and synthetic data), are evaluated using the state-of-the-art YOLO model across multiple metrics, including accuracy, precision, recall, and mean average precision. Experimental results revealed that System-2 outperformed System-1, showing a 3% improvement in accuracy, along with superior performance in all other metrics.
- Abstract(参考訳): 機械学習モデルの急速な進歩は、自動運転車、疾患診断、緊急事態の認識といった現実世界の応用の可能性を大幅に向上させた。
多くの機械学習モデルの性能は、トレーニングデータセットの性質とサイズに依存する。
これらのモデルは、実世界のデータの不足、ノイズ、不均衡のためにしばしば課題に直面し、パフォーマンスを制限します。
それでも、高品質で多様性があり、関連性があり、代表的なトレーニングデータは、現実のシナリオに順応する正確で信頼性の高い機械学習モデルを構築するために不可欠である。
十分に設計された合成データは、機械学習アルゴリズムの性能を向上させることができると仮定されている。
本研究の目的は、オブジェクト検出システムの予測精度を向上させるために、合成データセットを作成し、その有効性を評価することである。
この研究は、自動運転車のシナリオを、合成データの有効性を示す図示的な例と見なしている。
これらの合成データセットによる最先端物体検出モデルの性能向上効果について検討した。
その結果, 合成データを組み込むことで, 全ての性能行列のモデル性能が向上することが示唆された。
2つのディープラーニングシステム、System-1(実世界のデータに基づいてトレーニング)とSystem-2(実世界のデータと合成データの組合せに基づいてトレーニング)を、精度、精度、リコール、平均精度を含む複数のメトリクスにわたる最先端のYOLOモデルを用いて評価する。
実験の結果、System-2はSystem-1よりも性能が良く、精度は3%向上した。
関連論文リスト
- Improving Object Detector Training on Synthetic Data by Starting With a Strong Baseline Methodology [0.14980193397844666]
本稿では,合成データを用いた学習における事前学習対象検出器の性能向上手法を提案する。
提案手法は,実画像の事前学習から得られた有用な特徴を忘れずに,合成データから有能な情報を抽出することに焦点を当てる。
論文 参考訳(メタデータ) (2024-05-30T08:31:01Z) - Self-Correcting Self-Consuming Loops for Generative Model Training [16.59453827606427]
機械学習モデルは、人間と機械が生成したデータの混合に基づいて、ますます訓練されている。
合成データを用いた表現学習の成功にもかかわらず、合成データを用いた生成モデルトレーニングは「自己消費ループ」を創出する
本稿では,理想化された補正関数を導入することで,自己消費生成モデルの訓練を安定化することを目的とする。
論文 参考訳(メタデータ) (2024-02-11T02:34:42Z) - Learning Defect Prediction from Unrealistic Data [57.53586547895278]
事前訓練されたコードのモデルは、コード理解と生成タスクに人気がある。
このようなモデルは大きい傾向があり、訓練データの総量を必要とする。
人工的に注入されたバグのある関数など、はるかに大きくてもより現実的なデータセットを持つモデルをトレーニングすることが一般的になった。
このようなデータで訓練されたモデルは、実際のプログラムでは性能が劣りながら、同様のデータでのみうまく機能する傾向にある。
論文 参考訳(メタデータ) (2023-11-02T01:51:43Z) - Synthetic Alone: Exploring the Dark Side of Synthetic Data for
Grammatical Error Correction [5.586798679167892]
データ中心のAIアプローチは、モデルを変更することなく、モデルのパフォーマンスを向上させることを目的としている。
データ品質管理手法は、実世界のデータで訓練されたモデルに肯定的な影響を与える。
合成データのみに基づいて訓練されたモデルでは、負の影響が観測される。
論文 参考訳(メタデータ) (2023-06-26T01:40:28Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
本研究では,リンゴ樹の合成データセットを生成するための安定拡散2.1-baseの有用性について検討する。
我々は、現実世界のリンゴ検出データセットでリンゴを予測するために、YOLOv5mオブジェクト検出モデルを訓練する。
その結果、実世界の画像でトレーニングされたベースラインモデルと比較して、生成データでトレーニングされたモデルはわずかに性能が劣っていることがわかった。
論文 参考訳(メタデータ) (2023-06-20T09:46:01Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Bridging the Gap: Enhancing the Utility of Synthetic Data via
Post-Processing Techniques [7.967995669387532]
生成モデルは、実世界のデータを置き換えたり拡張したりできる合成データセットを生成するための有望なソリューションとして登場した。
本稿では,合成データセットの品質と多様性を向上させるために,新しい3つのポストプロセッシング手法を提案する。
Gap Filler(GaFi)は、Fashion-MNIST、CIFAR-10、CIFAR-100データセットにおいて、実精度スコアとのギャップを2.03%、1.78%、および3.99%に効果的に減少させることを示した。
論文 参考訳(メタデータ) (2023-05-17T10:50:38Z) - Towards Robust Dataset Learning [90.2590325441068]
本稿では,頑健なデータセット学習問題を定式化するための三段階最適化法を提案する。
ロバストな特徴と非ロバストな特徴を特徴付ける抽象モデルの下で,提案手法はロバストなデータセットを確実に学習する。
論文 参考訳(メタデータ) (2022-11-19T17:06:10Z) - Striving for data-model efficiency: Identifying data externalities on
group performance [75.17591306911015]
信頼できる、効果的で責任ある機械学習システムの構築は、トレーニングデータとモデリング決定の違いが、予測パフォーマンスにどのように影響するかを理解することに集中する。
我々は、特定のタイプのデータモデル非効率性に注目し、一部のソースからトレーニングデータを追加することで、集団の重要なサブグループで評価されるパフォーマンスを実際に低下させることができる。
以上の結果から,データ効率が正確かつ信頼性の高い機械学習の鍵となることが示唆された。
論文 参考訳(メタデータ) (2022-11-11T16:48:27Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - Efficient Realistic Data Generation Framework leveraging Deep
Learning-based Human Digitization [0.0]
提案手法は、実際の背景画像として入力され、さまざまなポーズで人物を投入する。
対応するタスクのベンチマークと評価は、実データに対する補足として、合成データが効果的に使用できることを示している。
論文 参考訳(メタデータ) (2021-06-28T08:07:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。