Machine Unlearning: A Comprehensive Survey
- URL: http://arxiv.org/abs/2405.07406v2
- Date: Thu, 25 Jul 2024 01:03:11 GMT
- Title: Machine Unlearning: A Comprehensive Survey
- Authors: Weiqi Wang, Zhiyi Tian, Chenhan Zhang, Shui Yu,
- Abstract summary: This survey aims to systematically classify a wide range of machine unlearning.
We categorize current unlearning methods into four scenarios: centralized unlearning, distributed and irregular data unlearning, unlearning verification, and privacy and security issues in unlearning.
- Score: 14.235752586133158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the right to be forgotten has been legislated worldwide, many studies attempt to design unlearning mechanisms to protect users' privacy when they want to leave machine learning service platforms. Specifically, machine unlearning is to make a trained model to remove the contribution of an erased subset of the training dataset. This survey aims to systematically classify a wide range of machine unlearning and discuss their differences, connections and open problems. We categorize current unlearning methods into four scenarios: centralized unlearning, distributed and irregular data unlearning, unlearning verification, and privacy and security issues in unlearning. Since centralized unlearning is the primary domain, we use two parts to introduce: firstly, we classify centralized unlearning into exact unlearning and approximate unlearning; secondly, we offer a detailed introduction to the techniques of these methods. Besides the centralized unlearning, we notice some studies about distributed and irregular data unlearning and introduce federated unlearning and graph unlearning as the two representative directions. After introducing unlearning methods, we review studies about unlearning verification. Moreover, we consider the privacy and security issues essential in machine unlearning and organize the latest related literature. Finally, we discuss the challenges of various unlearning scenarios and address the potential research directions.
Related papers
- Verification of Machine Unlearning is Fragile [48.71651033308842]
We introduce two novel adversarial unlearning processes capable of circumventing both types of verification strategies.
This study highlights the vulnerabilities and limitations in machine unlearning verification, paving the way for further research into the safety of machine unlearning.
arXiv Detail & Related papers (2024-08-01T21:37:10Z) - Learn What You Want to Unlearn: Unlearning Inversion Attacks against Machine Unlearning [16.809644622465086]
We conduct the first investigation to understand the extent to which machine unlearning can leak the confidential content of unlearned data.
Under the Machine Learning as a Service setting, we propose unlearning inversion attacks that can reveal the feature and label information of an unlearned sample.
The experimental results indicate that the proposed attack can reveal the sensitive information of the unlearned data.
arXiv Detail & Related papers (2024-04-04T06:37:46Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
federated unlearning enables the selective removal of data from models trained in federated systems.
This paper examines existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy.
We propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - A Duty to Forget, a Right to be Assured? Exposing Vulnerabilities in Machine Unlearning Services [31.347825826778276]
We try to explore the potential threats posed by unlearning services in Machine Learning (ML)
We propose two strategies that leverage over-unlearning to measure the impact on the trade-off balancing.
Results indicate significant potential for both strategies to undermine model efficacy in unlearning scenarios.
arXiv Detail & Related papers (2023-09-15T08:00:45Z) - Machine Unlearning: Solutions and Challenges [21.141664917477257]
Machine learning models may inadvertently memorize sensitive, unauthorized, or malicious data, posing risks of privacy breaches, security vulnerabilities, and performance degradation.
To address these issues, machine unlearning has emerged as a critical technique to selectively remove specific training data points' influence on trained models.
This paper provides a comprehensive taxonomy and analysis of the solutions in machine unlearning.
arXiv Detail & Related papers (2023-08-14T10:45:51Z) - Machine Unlearning: A Survey [56.79152190680552]
A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
arXiv Detail & Related papers (2023-06-06T10:18:36Z) - Machine Learning for QoS Prediction in Vehicular Communication:
Challenges and Solution Approaches [46.52224306624461]
We consider maximum throughput prediction enhancing, for example, streaming or high-definition mapping applications.
We highlight how confidence can be built on machine learning technologies by better understanding the underlying characteristics of the collected data.
We use explainable AI to show that machine learning can learn underlying principles of wireless networks without being explicitly programmed.
arXiv Detail & Related papers (2023-02-23T12:29:20Z) - VeriFi: Towards Verifiable Federated Unlearning [59.169431326438676]
Federated learning (FL) is a collaborative learning paradigm where participants jointly train a powerful model without sharing their private data.
Leaving participant has the right to request to delete its private data from the global model.
We propose VeriFi, a unified framework integrating federated unlearning and verification.
arXiv Detail & Related papers (2022-05-25T12:20:02Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.