論文の概要: EquiPy: Sequential Fairness using Optimal Transport in Python
- arxiv url: http://arxiv.org/abs/2503.09866v1
- Date: Wed, 12 Mar 2025 21:53:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:52:01.946228
- Title: EquiPy: Sequential Fairness using Optimal Transport in Python
- Title(参考訳): EquiPy: Pythonにおける最適なトランスポートを用いたシーケンスフェアネス
- Authors: Agathe Fernandes Machado, Suzie Grondin, Philipp Ratz, Arthur Charpentier, François Hu,
- Abstract要約: 本稿では,複数変数に対して効率よく公平性を実現するために,オープンソースのPythonパッケージであるEquiPyを紹介する。
また、グローバルコンテキスト内の各センシティブ変数の影響を解釈するための総合的なグラフィックユーティリティも提供する。
- 参考スコア(独自算出の注目度): 0.32985979395737786
- License:
- Abstract: Algorithmic fairness has received considerable attention due to the failures of various predictive AI systems that have been found to be unfairly biased against subgroups of the population. Many approaches have been proposed to mitigate such biases in predictive systems, however, they often struggle to provide accurate estimates and transparent correction mechanisms in the case where multiple sensitive variables, such as a combination of gender and race, are involved. This paper introduces a new open source Python package, EquiPy, which provides a easy-to-use and model agnostic toolbox for efficiently achieving fairness across multiple sensitive variables. It also offers comprehensive graphic utilities to enable the user to interpret the influence of each sensitive variable within a global context. EquiPy makes use of theoretical results that allow the complexity arising from the use of multiple variables to be broken down into easier-to-solve sub-problems. We demonstrate the ease of use for both mitigation and interpretation on publicly available data derived from the US Census and provide sample code for its use.
- Abstract(参考訳): アルゴリズムの公正さは、人口のサブグループに対して不公平に偏見を受けていることが判明した様々な予測AIシステムの失敗により、かなりの注目を集めている。
予測システムにおけるそのようなバイアスを軽減するための多くのアプローチが提案されているが、性別と人種の組み合わせのような複数の敏感な変数が関与している場合、正確な推定と透明な補正メカニズムの提供に苦慮することが多い。
本稿では,複数変数間の公平性を効率的に実現するための,使い易くモデルに依存しないツールボックスであるEquiPyを紹介する。
また、グローバルコンテキスト内の各センシティブ変数の影響を解釈するための総合的なグラフィックユーティリティも提供する。
EquiPyは理論的結果を利用して、複数の変数の使用によって生じる複雑さを、簡単に解けるサブプロブレムに分解することができる。
我々は,米国国勢調査から得られた公開データに対して,緩和と解釈の両面での使用の容易さを示し,その使用のためのサンプルコードを提供する。
関連論文リスト
- Conformal Validity Guarantees Exist for Any Data Distribution (and How to Find Them) [14.396431159723297]
理論上,共形予測はテキスト共同データ分布に拡張可能であることを示す。
最も一般的なケースは計算に実用的でないが、具体的には特定の共形アルゴリズムを導出するための手順を概説する。
論文 参考訳(メタデータ) (2024-05-10T17:40:24Z) - Counterfactual Fairness through Transforming Data Orthogonal to Bias [7.109458605736819]
我々は新しいデータ前処理アルゴリズムOrthogonal to Bias (OB)を提案する。
OBは、連続的な敏感な変数群の影響を排除し、機械学習アプリケーションにおける反ファクトフェアネスを促進するように設計されている。
OBはモデルに依存しないため、幅広い機械学習モデルやタスクに適用できる。
論文 参考訳(メタデータ) (2024-03-26T16:40:08Z) - Debiasing Machine Learning Models by Using Weakly Supervised Learning [3.3298048942057523]
アルゴリズムの出力と感度変数の両方が連続的な設定において、アルゴリズム決定のバイアス軽減の問題に取り組む。
典型的な例は、年齢や財政状況に関して行われる不公平な決定である。
我々のバイアス緩和戦略は弱い教師付き学習手法であり、データのごく一部を公平に測定する必要がある。
論文 参考訳(メタデータ) (2024-02-23T18:11:32Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - A Gentle Introduction to Conformal Prediction and Distribution-Free
Uncertainty Quantification [1.90365714903665]
このハンズオン導入は、配布不要なUQの実践的な実装に関心のある読者を対象としている。
PyTorch構文で、Pythonで説明的なイラストやサンプル、コードサンプルを多数含みます。
論文 参考訳(メタデータ) (2021-07-15T17:59:50Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
我々は、最小限の統計量という情報理論の概念を用いて、ロバストで刺激的な表現を定義し、分析する。
入力分布のバイアスしか持たない場合でも、モデルはトレーニングデータから急激な特徴を拾い上げることができることを証明しています。
分析から着想を得た結果,グループDROは,グループ同士の相関関係を直接考慮しない場合に失敗する可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-14T05:39:09Z) - Causally-motivated Shortcut Removal Using Auxiliary Labels [63.686580185674195]
このようなリスク不変予測器の学習に重要な課題はショートカット学習である。
この課題に対処するために、フレキシブルで因果的なアプローチを提案する。
この因果的動機付けされた正規化スキームが堅牢な予測子を生み出すことを理論的および実証的に示す。
論文 参考訳(メタデータ) (2021-05-13T16:58:45Z) - Estimating g-Leakage via Machine Learning [34.102705643128004]
本稿では,ブラックボックスシナリオにおけるシステムの情報漏洩を推定する問題について考察する。
システムの内部は学習者にとって未知であり、分析するには複雑すぎると仮定される。
機械学習(ML)アルゴリズムを用いて,g-vulnerabilityをブラックボックスで推定する手法を提案する。
論文 参考訳(メタデータ) (2020-05-09T09:26:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。