Investigating and Improving Counter-Stereotypical Action Relation in Text-to-Image Diffusion Models
- URL: http://arxiv.org/abs/2503.10037v1
- Date: Thu, 13 Mar 2025 04:38:02 GMT
- Title: Investigating and Improving Counter-Stereotypical Action Relation in Text-to-Image Diffusion Models
- Authors: Sina Malakouti, Adriana Kovashka,
- Abstract summary: Text-to-image diffusion models consistently fail at generating counter-stereotypical action relationships.<n>We discover this limitation stems from distributional biases rather than inherent model constraints.
- Score: 28.49695567630899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image diffusion models consistently fail at generating counter-stereotypical action relationships (e.g., "mouse chasing cat"), defaulting to frequent stereotypes even when explicitly prompted otherwise. Through systematic investigation, we discover this limitation stems from distributional biases rather than inherent model constraints. Our key insight reveals that while models fail on rare compositions when their inversions are common, they can successfully generate similar intermediate compositions (e.g., "mouse chasing boy"). To test this hypothesis, we develop a Role-Bridging Decomposition framework that leverages these intermediates to gradually teach rare relationships without architectural modifications. We introduce ActionBench, a comprehensive benchmark specifically designed to evaluate action-based relationship generation across stereotypical and counter-stereotypical configurations. Our experiments validate that intermediate compositions indeed facilitate counter-stereotypical generation, with both automatic metrics and human evaluations showing significant improvements over existing approaches. This work not only identifies fundamental biases in current text-to-image systems but demonstrates a promising direction for addressing them through compositional reasoning.
Related papers
- A Meaningful Perturbation Metric for Evaluating Explainability Methods [55.09730499143998]
We introduce a novel approach, which harnesses image generation models to perform targeted perturbation.
Specifically, we focus on inpainting only the high-relevance pixels of an input image to modify the model's predictions while preserving image fidelity.
This is in contrast to existing approaches, which often produce out-of-distribution modifications, leading to unreliable results.
arXiv Detail & Related papers (2025-04-09T11:46:41Z) - BiasConnect: Investigating Bias Interactions in Text-to-Image Models [73.76853483463836]
We introduce BiasConnect, a novel tool designed to analyze and quantify bias interactions in Text-to-Image models.
Our method provides empirical estimates that indicate how other bias dimensions shift toward or away from an ideal distribution when a given bias is modified.
We demonstrate the utility of BiasConnect for selecting optimal bias mitigation axes, comparing different TTI models on the dependencies they learn, and understanding the amplification of intersectional societal biases in TTI models.
arXiv Detail & Related papers (2025-03-12T19:01:41Z) - An Attention-based Framework for Fair Contrastive Learning [2.1605931466490795]
We propose a new method for fair contrastive learning that employs an attention mechanism to model bias-causing interactions.
Our attention mechanism avoids bias-causing samples that confound the model and focuses on bias-reducing samples that help learn semantically meaningful representations.
arXiv Detail & Related papers (2024-11-22T07:11:35Z) - Towards Deconfounded Image-Text Matching with Causal Inference [36.739004282369656]
We propose an innovative Deconfounded Causal Inference Network (DCIN) for image-text matching task.
DCIN decomposes the intra- and inter-modal confounders and incorporates them into the encoding stage of visual and textual features.
It can learn causality instead of spurious correlations caused by dataset bias.
arXiv Detail & Related papers (2024-08-22T11:04:28Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Detecting Spurious Correlations via Robust Visual Concepts in Real and
AI-Generated Image Classification [12.992095539058022]
We introduce a general-purpose method that efficiently detects potential spurious correlations.
The proposed method provides intuitive explanations while eliminating the need for pixel-level annotations.
Our method is also suitable for detecting spurious correlations that may propagate to downstream applications originating from generative models.
arXiv Detail & Related papers (2023-11-03T01:12:35Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Addressing Class Imbalance in Scene Graph Parsing by Learning to
Contrast and Score [65.18522219013786]
Scene graph parsing aims to detect objects in an image scene and recognize their relations.
Recent approaches have achieved high average scores on some popular benchmarks, but fail in detecting rare relations.
This paper introduces a novel integrated framework of classification and ranking to resolve the class imbalance problem.
arXiv Detail & Related papers (2020-09-28T13:57:59Z) - Evaluating and Mitigating Bias in Image Classifiers: A Causal
Perspective Using Counterfactuals [27.539001365348906]
We present a method for generating counterfactuals by incorporating a structural causal model (SCM) in an improved variant of Adversarially Learned Inference (ALI)
We show how to explain a pre-trained machine learning classifier, evaluate its bias, and mitigate the bias using a counterfactual regularizer.
arXiv Detail & Related papers (2020-09-17T13:19:31Z) - Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial
Perturbations [65.05561023880351]
Adversarial examples are malicious inputs crafted to induce misclassification.
This paper studies a complementary failure mode, invariance-based adversarial examples.
We show that defenses against sensitivity-based attacks actively harm a model's accuracy on invariance-based attacks.
arXiv Detail & Related papers (2020-02-11T18:50:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.