Innovative Silicosis and Pneumonia Classification: Leveraging Graph Transformer Post-hoc Modeling and Ensemble Techniques
- URL: http://arxiv.org/abs/2501.00520v1
- Date: Tue, 31 Dec 2024 16:03:43 GMT
- Title: Innovative Silicosis and Pneumonia Classification: Leveraging Graph Transformer Post-hoc Modeling and Ensemble Techniques
- Authors: Bao Q. Bui, Tien T. T. Nguyen, Duy M. Le, Cong Tran, Cuong Pham,
- Abstract summary: This paper presents a comprehensive study on the classification and detection of Silicosis-related lung inflammation.
We create a newly curated chest X-ray (CXR) image dataset named SVBCX that is tailored to the nuances of lung inflammation caused by distinct agents.
We propose a novel deep-learning architecture that integrates graph transformer networks alongside a traditional deep neural network module.
- Score: 2.7612447863077794
- License:
- Abstract: This paper presents a comprehensive study on the classification and detection of Silicosis-related lung inflammation. Our main contributions include 1) the creation of a newly curated chest X-ray (CXR) image dataset named SVBCX that is tailored to the nuances of lung inflammation caused by distinct agents, providing a valuable resource for silicosis and pneumonia research community; and 2) we propose a novel deep-learning architecture that integrates graph transformer networks alongside a traditional deep neural network module for the effective classification of silicosis and pneumonia. Additionally, we employ the Balanced Cross-Entropy (BalCE) as a loss function to ensure more uniform learning across different classes, enhancing the model's ability to discern subtle differences in lung conditions. The proposed model architecture and loss function selection aim to improve the accuracy and reliability of inflammation detection, particularly in the context of Silicosis. Furthermore, our research explores the efficacy of an ensemble approach that combines the strengths of diverse model architectures. Experimental results on the constructed dataset demonstrate promising outcomes, showcasing substantial enhancements compared to baseline models. The ensemble of models achieves a macro-F1 score of 0.9749 and AUC ROC scores exceeding 0.99 for each class, underscoring the effectiveness of our approach in accurate and robust lung inflammation classification.
Related papers
- TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
We propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures.
We empirically validate emphTopoTxR using the VICTRE phantom breast dataset.
Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na"ive imaging.
arXiv Detail & Related papers (2024-11-05T19:35:10Z) - Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
Identifying the thromboembolism source in ischemic stroke is crucial for treatment and secondary prevention.
This study describes a self-supervised deep learning approach in digital pathology of emboli for classifying ischemic stroke clot origin.
arXiv Detail & Related papers (2024-05-01T23:40:12Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
Cross-scale associations exist in the image patterns between the same case's CT images and its pathological images.
We propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on CT images.
arXiv Detail & Related papers (2023-08-09T02:04:05Z) - A Data Augmentation Method and the Embedding Mechanism for Detection and
Classification of Pulmonary Nodules on Small Samples [10.006124666261229]
Two strategies have been introduced: a new data augmentation method and a embedding mechanism.
The result of the 3DVNET model with the augmentation method for pulmonary nodule detection shows that the proposed data augmentation method outperforms the method based on generative adversarial network (GAN) framework.
arXiv Detail & Related papers (2023-03-02T13:58:45Z) - Accurate Detection of Paroxysmal Atrial Fibrillation with Certified-GAN
and Neural Architecture Search [1.1744028458220426]
This paper presents a novel machine learning framework for detecting Paroxysmal Atrial Fibrillation (PxAF)
The framework involves a Generative Adversarial Network (GAN) along with a Neural Architecture Search (NAS)
Experimental results show that the accuracy of the proposed framework exhibits a high value of 99%.
arXiv Detail & Related papers (2023-01-17T14:04:17Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Study on Transfer Learning Capabilities for Pneumonia Classification in
Chest-X-Rays Image [11.076902397190961]
This study explores the effectiveness of established neural network architectures on the pneumonia classification task through the transfer learning paradigm.
To present a comprehensive comparison, 12 well-known ImageNet pre-trained models were fine-tuned and used to discriminate among chest-x-rays of healthy people.
The experiments were performed using a total of 6330 images split between train, validation and test sets.
arXiv Detail & Related papers (2021-10-06T14:00:18Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.